Merge pull request #7469 from putcn/book_demo_distributed_fit_a_line
Add book demo distributed fit a lineadd_depthwiseConv_op_gpu
commit
b58c5eec37
@ -0,0 +1,62 @@
|
|||||||
|
import numpy as np
|
||||||
|
import paddle.v2 as paddle
|
||||||
|
import paddle.v2.fluid as fluid
|
||||||
|
import os
|
||||||
|
|
||||||
|
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
|
||||||
|
|
||||||
|
y_predict = fluid.layers.fc(input=x, size=1, act=None)
|
||||||
|
|
||||||
|
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
|
||||||
|
|
||||||
|
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
|
||||||
|
avg_cost = fluid.layers.mean(x=cost)
|
||||||
|
|
||||||
|
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
|
||||||
|
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
|
||||||
|
|
||||||
|
BATCH_SIZE = 20
|
||||||
|
|
||||||
|
train_reader = paddle.batch(
|
||||||
|
paddle.reader.shuffle(
|
||||||
|
paddle.dataset.uci_housing.train(), buf_size=500),
|
||||||
|
batch_size=BATCH_SIZE)
|
||||||
|
|
||||||
|
place = fluid.CPUPlace()
|
||||||
|
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
|
||||||
|
t = fluid.DistributeTranspiler()
|
||||||
|
# all parameter server endpoints list for spliting parameters
|
||||||
|
pserver_endpoints = os.getenv("PSERVERS")
|
||||||
|
# server endpoint for current node
|
||||||
|
current_endpoint = os.getenv("SERVER_ENDPOINT")
|
||||||
|
# run as trainer or parameter server
|
||||||
|
training_role = os.getenv("TRAINING_ROLE",
|
||||||
|
"TRAINER") # get the training role: trainer/pserver
|
||||||
|
t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
|
||||||
|
|
||||||
|
if training_role == "PSERVER":
|
||||||
|
if not current_endpoint:
|
||||||
|
print("need env SERVER_ENDPOINT")
|
||||||
|
exit(1)
|
||||||
|
pserver_prog = t.get_pserver_program(current_endpoint, optimize_ops)
|
||||||
|
exe.run(fluid.default_startup_program())
|
||||||
|
exe.run(pserver_prog)
|
||||||
|
else:
|
||||||
|
trainer_prog = t.get_trainer_program()
|
||||||
|
|
||||||
|
exe.run(fluid.default_startup_program())
|
||||||
|
|
||||||
|
PASS_NUM = 100
|
||||||
|
for pass_id in range(PASS_NUM):
|
||||||
|
fluid.io.save_persistables(exe, "./fit_a_line.model/")
|
||||||
|
fluid.io.load_persistables(exe, "./fit_a_line.model/")
|
||||||
|
for data in train_reader():
|
||||||
|
avg_loss_value, = exe.run(trainer_prog,
|
||||||
|
feed=feeder.feed(data),
|
||||||
|
fetch_list=[avg_cost])
|
||||||
|
|
||||||
|
if avg_loss_value[0] < 10.0:
|
||||||
|
exit(0)
|
||||||
|
exit(1)
|
Loading…
Reference in new issue