|
|
|
@ -3,7 +3,7 @@ import sys
|
|
|
|
|
import paddle.v2 as paddle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def seqToseq_net(source_dict_dim, target_dict_dim, is_generating):
|
|
|
|
|
def seqToseq_net(source_dict_dim, target_dict_dim, is_generating=False):
|
|
|
|
|
### Network Architecture
|
|
|
|
|
word_vector_dim = 512 # dimension of word vector
|
|
|
|
|
decoder_size = 512 # dimension of hidden unit in GRU Decoder network
|
|
|
|
@ -120,13 +120,7 @@ def seqToseq_net(source_dict_dim, target_dict_dim, is_generating):
|
|
|
|
|
eos_id=1,
|
|
|
|
|
beam_size=beam_size,
|
|
|
|
|
max_length=max_length)
|
|
|
|
|
#
|
|
|
|
|
# seqtext_printer_evaluator(
|
|
|
|
|
# input=beam_gen,
|
|
|
|
|
# id_input=data_layer(
|
|
|
|
|
# name="sent_id", size=1),
|
|
|
|
|
# dict_file=trg_dict_path,
|
|
|
|
|
# result_file=gen_trans_file)
|
|
|
|
|
|
|
|
|
|
return beam_gen
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -138,7 +132,7 @@ def main():
|
|
|
|
|
source_dict_dim = target_dict_dim = dict_size
|
|
|
|
|
|
|
|
|
|
# define network topology
|
|
|
|
|
cost = seqToseq_net(source_dict_dim, target_dict_dim, False)
|
|
|
|
|
cost = seqToseq_net(source_dict_dim, target_dict_dim)
|
|
|
|
|
parameters = paddle.parameters.create(cost)
|
|
|
|
|
|
|
|
|
|
# define optimize method and trainer
|
|
|
|
|