parent
							
								
									a1f1a5ed8a
								
							
						
					
					
						commit
						b6dc3a59f1
					
				@ -0,0 +1,138 @@
 | 
				
			|||||||
 | 
					// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | 
				
			||||||
 | 
					//
 | 
				
			||||||
 | 
					// Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					// you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					// You may obtain a copy of the License at
 | 
				
			||||||
 | 
					//
 | 
				
			||||||
 | 
					//     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					//
 | 
				
			||||||
 | 
					// Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					// distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					// See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					// limitations under the License.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#include "paddle/fluid/framework/details/data_balance_op_handle.h"
 | 
				
			||||||
 | 
					#include <algorithm>
 | 
				
			||||||
 | 
					#include "paddle/fluid/framework/details/container_cast.h"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					namespace paddle {
 | 
				
			||||||
 | 
					namespace framework {
 | 
				
			||||||
 | 
					namespace details {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					DataBalanceOpHandle::DataBalanceOpHandle(
 | 
				
			||||||
 | 
					    const std::vector<Scope *> &local_scopes,
 | 
				
			||||||
 | 
					    const std::vector<platform::Place> &places)
 | 
				
			||||||
 | 
					    : local_scopes_(local_scopes), places_(places) {}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					std::string DataBalanceOpHandle::Name() const { return "data balance"; }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					std::vector<std::array<int, 3>> DataBalanceOpHandle::GetBalancePlan(
 | 
				
			||||||
 | 
					    const std::vector<int> &device_sizes) {
 | 
				
			||||||
 | 
					  int device_num = device_sizes.size();
 | 
				
			||||||
 | 
					  int total_size = 0;
 | 
				
			||||||
 | 
					  int empty_num = 0;
 | 
				
			||||||
 | 
					  std::vector<std::array<int, 2>> size_device_vec;
 | 
				
			||||||
 | 
					  size_device_vec.reserve(device_num);
 | 
				
			||||||
 | 
					  for (int i = 0; i < device_num; ++i) {
 | 
				
			||||||
 | 
					    if (device_sizes[i] == 0) {
 | 
				
			||||||
 | 
					      ++empty_num;
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    total_size += device_sizes[i];
 | 
				
			||||||
 | 
					    size_device_vec.push_back({{device_sizes[i], i}});
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  std::vector<std::array<int, 3>> res;
 | 
				
			||||||
 | 
					  if (empty_num == 0) {
 | 
				
			||||||
 | 
					    // No need to do data balance.
 | 
				
			||||||
 | 
					    return res;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  if (total_size < device_num) {
 | 
				
			||||||
 | 
					    // No enough data.
 | 
				
			||||||
 | 
					    PADDLE_THROW("There is no next data.");
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  std::sort(size_device_vec.begin(), size_device_vec.end(),
 | 
				
			||||||
 | 
					            [](const std::array<int, 2> &a, const std::array<int, 2> &b) {
 | 
				
			||||||
 | 
					              return a[0] > b[0];
 | 
				
			||||||
 | 
					            });
 | 
				
			||||||
 | 
					  int expected_device_size = total_size / device_num;
 | 
				
			||||||
 | 
					  int src_idx = 0;
 | 
				
			||||||
 | 
					  for (int dst_idx = device_num - empty_num; dst_idx < device_num; ++dst_idx) {
 | 
				
			||||||
 | 
					    if (size_device_vec[src_idx][0] <= expected_device_size) {
 | 
				
			||||||
 | 
					      ++src_idx;
 | 
				
			||||||
 | 
					      PADDLE_ENFORCE_LT(src_idx, device_num - empty_num);
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    size_device_vec[src_idx][0] -= expected_device_size;
 | 
				
			||||||
 | 
					    size_device_vec[dst_idx][0] += expected_device_size;
 | 
				
			||||||
 | 
					    res.push_back({{size_device_vec[src_idx][1], size_device_vec[dst_idx][1],
 | 
				
			||||||
 | 
					                    expected_device_size}});
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  return res;
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					void DataBalanceOpHandle::RunImpl() {
 | 
				
			||||||
 | 
					  if (places_.size() == 1) {
 | 
				
			||||||
 | 
					    return;
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  auto in_var_handles = DynamicCast<VarHandle>(inputs_);
 | 
				
			||||||
 | 
					  auto out_var_handles = DynamicCast<VarHandle>(outputs_);
 | 
				
			||||||
 | 
					  PADDLE_ENFORCE(in_var_handles.size() % places_.size() == 0);
 | 
				
			||||||
 | 
					  PADDLE_ENFORCE_EQ(
 | 
				
			||||||
 | 
					      in_var_handles.size(), out_var_handles.size(),
 | 
				
			||||||
 | 
					      "The NoDummyInputSize and NoDummyOutputSize should be equal.");
 | 
				
			||||||
 | 
					  int data_num = in_var_handles.size() / places_.size();
 | 
				
			||||||
 | 
					  WaitInputVarGenerated();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  std::vector<std::vector<LoDTensor *>> lod_tensors;
 | 
				
			||||||
 | 
					  std::vector<int> device_sizes;
 | 
				
			||||||
 | 
					  for (int i = 0; i < static_cast<int>(in_var_handles.size()); ++i) {
 | 
				
			||||||
 | 
					    PADDLE_ENFORCE_EQ(in_var_handles[i]->name_, out_var_handles[i]->name_,
 | 
				
			||||||
 | 
					                      "The name of input and output should be equal.");
 | 
				
			||||||
 | 
					    int place_idx = i / data_num;
 | 
				
			||||||
 | 
					    int data_idx = i % data_num;
 | 
				
			||||||
 | 
					    auto *local_scope =
 | 
				
			||||||
 | 
					        local_scopes_[place_idx]->FindVar(kLocalExecScopeName)->Get<Scope *>();
 | 
				
			||||||
 | 
					    auto *tensor_var = local_scope->FindVar(in_var_handles[i]->name_);
 | 
				
			||||||
 | 
					    PADDLE_ENFORCE(tensor_var->IsType<LoDTensor>());
 | 
				
			||||||
 | 
					    auto *tensor = tensor_var->GetMutable<LoDTensor>();
 | 
				
			||||||
 | 
					    PADDLE_ENFORCE(places_[place_idx] == tensor->place());
 | 
				
			||||||
 | 
					    lod_tensors[data_idx].push_back(tensor);
 | 
				
			||||||
 | 
					    int ins_size =
 | 
				
			||||||
 | 
					        tensor->lod().empty() ? tensor->dims()[0] : tensor->NumElements();
 | 
				
			||||||
 | 
					    if (data_idx == 0) {
 | 
				
			||||||
 | 
					      device_sizes.emplace_back(ins_size);
 | 
				
			||||||
 | 
					    } else {
 | 
				
			||||||
 | 
					      PADDLE_ENFORCE_EQ(ins_size, device_sizes.at(place_idx));
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					  const auto &balance_plan = GetBalancePlan(device_sizes);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  for (const auto &trans : balance_plan) {
 | 
				
			||||||
 | 
					    for (int data_idx = 0; data_idx < data_num; ++data_idx) {
 | 
				
			||||||
 | 
					      LoDTensor *src_tensor = lod_tensors[data_idx][trans[0]];
 | 
				
			||||||
 | 
					      LoDTensor *dst_tensor = lod_tensors[data_idx][trans[1]];
 | 
				
			||||||
 | 
					      int trans_ins_size = trans[2];
 | 
				
			||||||
 | 
					      LoD src_lod = src_tensor->lod();
 | 
				
			||||||
 | 
					      int src_ins_size =
 | 
				
			||||||
 | 
					          src_lod.empty() ? src_tensor->dims()[0] : src_tensor->NumElements();
 | 
				
			||||||
 | 
					      int cut_point = src_ins_size - trans_ins_size;
 | 
				
			||||||
 | 
					      if (!src_lod.empty()) {
 | 
				
			||||||
 | 
					        for (auto &level : src_lod) {
 | 
				
			||||||
 | 
					          cut_point = level[cut_point];
 | 
				
			||||||
 | 
					        }
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					      TensorCopySync(src_tensor->Slice(cut_point, src_tensor->dims()[0]),
 | 
				
			||||||
 | 
					                     dst_tensor->place(), dst_tensor);
 | 
				
			||||||
 | 
					      src_tensor->ShareDataWith(src_tensor->Slice(0, cut_point));
 | 
				
			||||||
 | 
					      if (!src_lod.empty()) {
 | 
				
			||||||
 | 
					        dst_tensor->set_lod(SliceInLevel(
 | 
				
			||||||
 | 
					            src_lod, 0, src_ins_size - trans_ins_size, src_ins_size));
 | 
				
			||||||
 | 
					        src_tensor->set_lod(
 | 
				
			||||||
 | 
					            SliceInLevel(src_lod, 0, 0, src_ins_size - trans_ins_size));
 | 
				
			||||||
 | 
					      }
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					  }
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					}  // namespace details
 | 
				
			||||||
 | 
					}  // namespace framework
 | 
				
			||||||
 | 
					}  // namespace paddle
 | 
				
			||||||
@ -0,0 +1,50 @@
 | 
				
			|||||||
 | 
					// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | 
				
			||||||
 | 
					//
 | 
				
			||||||
 | 
					// Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					// you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					// You may obtain a copy of the License at
 | 
				
			||||||
 | 
					//
 | 
				
			||||||
 | 
					//     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					//
 | 
				
			||||||
 | 
					// Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					// distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					// See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					// limitations under the License.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#pragma once
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#include <string>
 | 
				
			||||||
 | 
					#include <vector>
 | 
				
			||||||
 | 
					#include "paddle/fluid/framework/details/op_handle_base.h"
 | 
				
			||||||
 | 
					#include "paddle/fluid/framework/lod_tensor.h"
 | 
				
			||||||
 | 
					#include "paddle/fluid/framework/scope.h"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					namespace paddle {
 | 
				
			||||||
 | 
					namespace framework {
 | 
				
			||||||
 | 
					namespace details {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					struct DataBalanceOpHandle : public OpHandleBase {
 | 
				
			||||||
 | 
					 public:
 | 
				
			||||||
 | 
					  DataBalanceOpHandle(const std::vector<Scope *> &local_scopes,
 | 
				
			||||||
 | 
					                      const std::vector<platform::Place> &places);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  std::string Name() const override;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  bool IsMultiDeviceTransfer() override { return false; };
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 protected:
 | 
				
			||||||
 | 
					  void RunImpl() override;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					 private:
 | 
				
			||||||
 | 
					  // std::vector<(src_dev_id, dst_dev_id, trans_size)>
 | 
				
			||||||
 | 
					  std::vector<std::array<int, 3>> GetBalancePlan(
 | 
				
			||||||
 | 
					      const std::vector<int> &batch_size_per_device);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  const std::vector<Scope *> &local_scopes_;
 | 
				
			||||||
 | 
					  const std::vector<platform::Place> &places_;
 | 
				
			||||||
 | 
					};
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					}  // namespace details
 | 
				
			||||||
 | 
					}  // namespace framework
 | 
				
			||||||
 | 
					}  // namespace paddle
 | 
				
			||||||
					Loading…
					
					
				
		Reference in new issue