parent
754fd57ed7
commit
b76343c3b7
@ -0,0 +1,129 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.layers as layers
|
||||
import paddle.fluid.core as core
|
||||
import gradient_checker
|
||||
|
||||
from decorator_helper import prog_scope
|
||||
|
||||
|
||||
class TestConvDoubleGradCheck(unittest.TestCase):
|
||||
@prog_scope()
|
||||
def func(self, place):
|
||||
shape = [2, 4, 7, 8]
|
||||
eps = 0.005
|
||||
dtype = np.float64
|
||||
x = layers.data('x', shape, False, dtype)
|
||||
y = layers.conv2d(x, 4, 1, bias_attr=False)
|
||||
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
||||
|
||||
w = fluid.default_main_program().global_block().all_parameters()
|
||||
w_arr = []
|
||||
for p in w:
|
||||
w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
|
||||
gradient_checker.double_grad_check(
|
||||
[x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)
|
||||
|
||||
def test_grad(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for p in places:
|
||||
self.func(p)
|
||||
|
||||
|
||||
class TestConvDoubleGradCheckTest1(unittest.TestCase):
|
||||
@prog_scope()
|
||||
def func(self, place):
|
||||
shape = [2, 3, 4, 5]
|
||||
eps = 0.005
|
||||
dtype = np.float64
|
||||
x = layers.data('x', shape, False, dtype)
|
||||
y = layers.conv2d(x, 4, 1, padding=1, bias_attr=False)
|
||||
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
||||
|
||||
w = fluid.default_main_program().global_block().all_parameters()
|
||||
w_arr = []
|
||||
for p in w:
|
||||
w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
|
||||
gradient_checker.double_grad_check(
|
||||
[x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)
|
||||
|
||||
def test_grad(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for p in places:
|
||||
self.func(p)
|
||||
|
||||
|
||||
class TestConv3DDoubleGradCheck(unittest.TestCase):
|
||||
@prog_scope()
|
||||
def func(self, place):
|
||||
shape = [2, 4, 3, 4, 2]
|
||||
eps = 0.005
|
||||
dtype = np.float64
|
||||
x = layers.data('x', shape, False, dtype)
|
||||
y = layers.conv3d(x, 4, 1, bias_attr=False)
|
||||
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
||||
|
||||
w = fluid.default_main_program().global_block().all_parameters()
|
||||
w_arr = []
|
||||
for p in w:
|
||||
w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
|
||||
gradient_checker.double_grad_check(
|
||||
[x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)
|
||||
|
||||
def test_grad(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for p in places:
|
||||
self.func(p)
|
||||
|
||||
|
||||
class TestConv3DDoubleGradCheckTest1(unittest.TestCase):
|
||||
@prog_scope()
|
||||
def func(self, place):
|
||||
shape = [2, 4, 5, 3, 2]
|
||||
eps = 0.005
|
||||
dtype = np.float64
|
||||
x = layers.data('x', shape, False, dtype)
|
||||
y = layers.conv3d(x, 4, 1, padding=1, bias_attr=False)
|
||||
x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
|
||||
|
||||
w = fluid.default_main_program().global_block().all_parameters()
|
||||
w_arr = []
|
||||
for p in w:
|
||||
w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype))
|
||||
gradient_checker.double_grad_check(
|
||||
[x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps)
|
||||
|
||||
def test_grad(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for p in places:
|
||||
self.func(p)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue