Merge pull request #3560 from guoshengCS/add-ShiftLayer
Add ScaleShiftLayerrevert-3824-remove_grad_op_type
commit
b7a6cc9cc3
@ -0,0 +1,107 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "Layer.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* A layer applies a linear transformation to each element in each row of
|
||||||
|
* the input matrix. For each element, the layer first re-scale it and then
|
||||||
|
* adds a bias to it.
|
||||||
|
*
|
||||||
|
* \f[
|
||||||
|
* y = wx + b
|
||||||
|
* \f]
|
||||||
|
*
|
||||||
|
* Here, w is the scale and b is the bias. Both w and b are trainable scalars.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
class ScaleShiftLayer : public Layer {
|
||||||
|
protected:
|
||||||
|
std::unique_ptr<Weight> scale_;
|
||||||
|
std::unique_ptr<Weight> offset_;
|
||||||
|
|
||||||
|
public:
|
||||||
|
explicit ScaleShiftLayer(const LayerConfig& config) : Layer(config) {}
|
||||||
|
|
||||||
|
bool init(const LayerMap& layerMap,
|
||||||
|
const ParameterMap& parameterMap) override;
|
||||||
|
|
||||||
|
void forward(PassType passType) override;
|
||||||
|
void backward(const UpdateCallback& callback = nullptr) override;
|
||||||
|
};
|
||||||
|
|
||||||
|
REGISTER_LAYER(scale_shift, ScaleShiftLayer);
|
||||||
|
|
||||||
|
bool ScaleShiftLayer::init(const LayerMap& layerMap,
|
||||||
|
const ParameterMap& parameterMap) {
|
||||||
|
Layer::init(layerMap, parameterMap);
|
||||||
|
CHECK_EQ(inputLayers_.size(), 1U);
|
||||||
|
scale_.reset(new Weight(1, 1, parameters_[0]));
|
||||||
|
if (biasParameter_.get() != NULL) {
|
||||||
|
offset_ = std::unique_ptr<Weight>(new Weight(1, 1, biasParameter_));
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
void ScaleShiftLayer::forward(PassType passType) {
|
||||||
|
Layer::forward(passType);
|
||||||
|
|
||||||
|
MatrixPtr inV = getInputValue(0);
|
||||||
|
resetOutput(inV->getHeight(), inV->getWidth());
|
||||||
|
MatrixPtr outV = getOutputValue();
|
||||||
|
real scaleValue = scale_->getW()->getElement(0, 0);
|
||||||
|
outV->mulScalar(*inV, scaleValue);
|
||||||
|
if (offset_) {
|
||||||
|
real offsetValue = offset_->getW()->getElement(0, 0);
|
||||||
|
outV->add(offsetValue);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ScaleShiftLayer::backward(const UpdateCallback& callback) {
|
||||||
|
MatrixPtr inV = getInputValue(0);
|
||||||
|
MatrixPtr inG = getInputGrad(0);
|
||||||
|
MatrixPtr outV = getOutputValue();
|
||||||
|
MatrixPtr outG = getOutputGrad();
|
||||||
|
|
||||||
|
/* Calculate the parameter gradient for the current layer */
|
||||||
|
if (scale_->getWGrad()) {
|
||||||
|
MatrixPtr rowSumMtx;
|
||||||
|
Matrix::resizeOrCreate(rowSumMtx, outG->getHeight(), 1, false, useGpu_);
|
||||||
|
// this_i = scaleDest * this_i + scaleSum * \sum_j b_{ij} * c_{ij}
|
||||||
|
rowSumMtx->sumOfProducts(
|
||||||
|
/* b= */ *inV, /* c= */ *outG, /* scaleSum= */ 1, /* scaleDest= */ 0.);
|
||||||
|
// this_i = scaleDest * this_i + scaleSum * \sum_j b_{ji}
|
||||||
|
scale_->getWGrad()->sumCols(
|
||||||
|
/* b= */ *rowSumMtx, /* scaleSum= */ 1., /* scaleDest= */ 1.);
|
||||||
|
scale_->getParameterPtr()->incUpdate(callback);
|
||||||
|
}
|
||||||
|
if (offset_ && offset_->getWGrad()) {
|
||||||
|
MatrixPtr rowSumMtx;
|
||||||
|
Matrix::resizeOrCreate(rowSumMtx, outG->getHeight(), 1, false, useGpu_);
|
||||||
|
rowSumMtx->sumRows(*outG, 1., 0.);
|
||||||
|
offset_->getWGrad()->sumCols(*rowSumMtx, 1., 1.);
|
||||||
|
offset_->getParameterPtr()->incUpdate(callback);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Calculate the input layers error */
|
||||||
|
if (inG) {
|
||||||
|
real scaleValue = scale_->getW()->getElement(0, 0);
|
||||||
|
inG->add(*outG, scaleValue);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,72 @@
|
|||||||
|
type: "nn"
|
||||||
|
layers {
|
||||||
|
name: "data"
|
||||||
|
type: "data"
|
||||||
|
size: 100
|
||||||
|
active_type: ""
|
||||||
|
}
|
||||||
|
layers {
|
||||||
|
name: "__scale_shift_0__"
|
||||||
|
type: "scale_shift"
|
||||||
|
size: 100
|
||||||
|
active_type: ""
|
||||||
|
inputs {
|
||||||
|
input_layer_name: "data"
|
||||||
|
input_parameter_name: "___scale_shift_0__.w0"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
layers {
|
||||||
|
name: "__scale_shift_1__"
|
||||||
|
type: "scale_shift"
|
||||||
|
size: 100
|
||||||
|
active_type: ""
|
||||||
|
inputs {
|
||||||
|
input_layer_name: "data"
|
||||||
|
input_parameter_name: "___scale_shift_1__.w0"
|
||||||
|
}
|
||||||
|
bias_parameter_name: "___scale_shift_1__.wbias"
|
||||||
|
}
|
||||||
|
parameters {
|
||||||
|
name: "___scale_shift_0__.w0"
|
||||||
|
size: 1
|
||||||
|
initial_mean: 0.0
|
||||||
|
initial_std: 1.0
|
||||||
|
dims: 1
|
||||||
|
dims: 1
|
||||||
|
initial_strategy: 0
|
||||||
|
initial_smart: true
|
||||||
|
}
|
||||||
|
parameters {
|
||||||
|
name: "___scale_shift_1__.w0"
|
||||||
|
size: 1
|
||||||
|
initial_mean: 0.0
|
||||||
|
initial_std: 1.0
|
||||||
|
dims: 1
|
||||||
|
dims: 1
|
||||||
|
initial_strategy: 0
|
||||||
|
initial_smart: true
|
||||||
|
}
|
||||||
|
parameters {
|
||||||
|
name: "___scale_shift_1__.wbias"
|
||||||
|
size: 1
|
||||||
|
initial_mean: 0.0
|
||||||
|
initial_std: 0.0
|
||||||
|
dims: 1
|
||||||
|
dims: 1
|
||||||
|
initial_strategy: 0
|
||||||
|
initial_smart: false
|
||||||
|
}
|
||||||
|
input_layer_names: "data"
|
||||||
|
output_layer_names: "__scale_shift_0__"
|
||||||
|
output_layer_names: "__scale_shift_1__"
|
||||||
|
sub_models {
|
||||||
|
name: "root"
|
||||||
|
layer_names: "data"
|
||||||
|
layer_names: "__scale_shift_0__"
|
||||||
|
layer_names: "__scale_shift_1__"
|
||||||
|
input_layer_names: "data"
|
||||||
|
output_layer_names: "__scale_shift_0__"
|
||||||
|
output_layer_names: "__scale_shift_1__"
|
||||||
|
is_recurrent_layer_group: false
|
||||||
|
}
|
||||||
|
|
@ -0,0 +1,9 @@
|
|||||||
|
from paddle.trainer_config_helpers import *
|
||||||
|
|
||||||
|
data = data_layer(name='data', size=100)
|
||||||
|
|
||||||
|
scale = scale_shift_layer(input=data, bias_attr=False)
|
||||||
|
|
||||||
|
scale_shift = scale_shift_layer(input=data)
|
||||||
|
|
||||||
|
outputs(scale, scale_shift)
|
Loading…
Reference in new issue