parent
cce682fef8
commit
ba791f7b3f
@ -1,16 +1,17 @@
|
|||||||
if(WITH_GPU)
|
if(WITH_GPU)
|
||||||
nv_library(math_function SRCS math_function.cc math_function.cu im2col.cc
|
nv_library(math_function SRCS math_function.cc math_function.cu im2col.cc
|
||||||
im2col.cu DEPS cblas device_context operator)
|
im2col.cu vol2col.cc vol2col.cu DEPS cblas device_context operator)
|
||||||
nv_library(softmax_function SRCS softmax.cc softmax.cu
|
nv_library(softmax_function SRCS softmax.cc softmax.cu
|
||||||
DEPS operator)
|
DEPS operator)
|
||||||
nv_library(cross_entropy_function SRCS cross_entropy.cc cross_entropy.cu
|
nv_library(cross_entropy_function SRCS cross_entropy.cc cross_entropy.cu
|
||||||
DEPS operator)
|
DEPS operator)
|
||||||
else()
|
else()
|
||||||
cc_library(math_function SRCS math_function.cc im2col.cc
|
cc_library(math_function SRCS math_function.cc im2col.cc vol2col.cc
|
||||||
DEPS cblas device_context operator)
|
DEPS cblas device_context operator)
|
||||||
cc_library(softmax_function SRCS softmax.cc DEPS operator)
|
cc_library(softmax_function SRCS softmax.cc DEPS operator)
|
||||||
cc_library(cross_entropy_function SRCS cross_entropy.cc DEPS operator)
|
cc_library(cross_entropy_function SRCS cross_entropy.cc DEPS operator)
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
nv_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor)
|
nv_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor)
|
||||||
cc_test(im2col_test SRCS im2col_test.cc DEPS math_function tensor)
|
cc_test(im2col_test SRCS im2col_test.cc DEPS math_function tensor)
|
||||||
|
cc_test(vol2col_test SRCS vol2col_test.cc DEPS math_function tensor)
|
||||||
|
@ -0,0 +1,155 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/math/vol2col.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
namespace math {
|
||||||
|
|
||||||
|
/*
|
||||||
|
* vol = [input_channels, input_depth, input_height, input_width]
|
||||||
|
* col =
|
||||||
|
* [input_channels, filter_depth, filter_height, filter_width,
|
||||||
|
* output_depth, output_height, output_width]
|
||||||
|
*/
|
||||||
|
template <class T>
|
||||||
|
class Vol2ColFunctor<platform::CPUPlace, T> {
|
||||||
|
public:
|
||||||
|
void operator()(const platform::DeviceContext& context,
|
||||||
|
const framework::Tensor& vol, framework::Tensor& col,
|
||||||
|
int stride_depth, int stride_height, int stride_width,
|
||||||
|
int padding_depth, int padding_height,
|
||||||
|
int padding_width) const {
|
||||||
|
PADDLE_ENFORCE(vol.dims().size() == 4);
|
||||||
|
PADDLE_ENFORCE(col.dims().size() == 7);
|
||||||
|
|
||||||
|
int input_channels = vol.dims()[0];
|
||||||
|
int input_depth = vol.dims()[1];
|
||||||
|
int input_height = vol.dims()[2];
|
||||||
|
int input_width = vol.dims()[3];
|
||||||
|
int filter_depth = col.dims()[1];
|
||||||
|
int filter_height = col.dims()[2];
|
||||||
|
int filter_width = col.dims()[3];
|
||||||
|
int output_depth = col.dims()[4];
|
||||||
|
int output_height = col.dims()[5];
|
||||||
|
int output_width = col.dims()[6];
|
||||||
|
int channels_col =
|
||||||
|
input_channels * filter_depth * filter_height * filter_width;
|
||||||
|
|
||||||
|
const T* vol_data = vol.data<T>();
|
||||||
|
T* col_data = col.data<T>();
|
||||||
|
|
||||||
|
for (int c = 0; c < channels_col; ++c) {
|
||||||
|
int w_offset = c % filter_width;
|
||||||
|
int h_offset = (c / filter_width) % filter_height;
|
||||||
|
int d_offset = (c / filter_width / filter_height) % filter_depth;
|
||||||
|
int c_in = c / filter_width / filter_height / filter_depth;
|
||||||
|
for (int d = 0; d < output_depth; ++d) {
|
||||||
|
int d_pad = d * stride_depth - padding_depth + d_offset;
|
||||||
|
for (int h = 0; h < output_height; ++h) {
|
||||||
|
int h_pad = h * stride_height - padding_height + h_offset;
|
||||||
|
for (int w = 0; w < output_width; ++w) {
|
||||||
|
int w_pad = w * stride_width - padding_width + w_offset;
|
||||||
|
|
||||||
|
int col_idx =
|
||||||
|
((c * output_depth + d) * output_height + h) * output_width + w;
|
||||||
|
if (h_pad < 0 || h_pad >= input_height || w_pad < 0 ||
|
||||||
|
w_pad >= input_width || d_pad < 0 || d_pad >= input_depth) {
|
||||||
|
col_data[col_idx] = T(0);
|
||||||
|
} else {
|
||||||
|
int vol_idx =
|
||||||
|
((c_in * input_depth + d_pad) * input_height + h_pad) *
|
||||||
|
input_width +
|
||||||
|
w_pad;
|
||||||
|
col_data[col_idx] = vol_data[vol_idx];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/*
|
||||||
|
* vol = [input_channels,input_depth, input_height, input_width]
|
||||||
|
* col =
|
||||||
|
* [input_channels, filter_depth, filter_height, filter_width,
|
||||||
|
* output_depth, output_height, output_width]
|
||||||
|
*/
|
||||||
|
template <class T>
|
||||||
|
class Col2VolFunctor<platform::CPUPlace, T> {
|
||||||
|
public:
|
||||||
|
void operator()(const platform::DeviceContext& context,
|
||||||
|
framework::Tensor& vol, const framework::Tensor& col,
|
||||||
|
int stride_depth, int stride_height, int stride_width,
|
||||||
|
int padding_depth, int padding_height,
|
||||||
|
int padding_width) const {
|
||||||
|
PADDLE_ENFORCE(vol.dims().size() == 4);
|
||||||
|
PADDLE_ENFORCE(col.dims().size() == 7);
|
||||||
|
|
||||||
|
int input_channels = vol.dims()[0];
|
||||||
|
int input_depth = vol.dims()[1];
|
||||||
|
int input_height = vol.dims()[2];
|
||||||
|
int input_width = vol.dims()[3];
|
||||||
|
int filter_depth = col.dims()[1];
|
||||||
|
int filter_height = col.dims()[2];
|
||||||
|
int filter_width = col.dims()[3];
|
||||||
|
int output_depth = col.dims()[4];
|
||||||
|
int output_height = col.dims()[5];
|
||||||
|
int output_width = col.dims()[6];
|
||||||
|
int channels_col =
|
||||||
|
input_channels * filter_depth * filter_height * filter_width;
|
||||||
|
|
||||||
|
T* vol_data = vol.data<T>();
|
||||||
|
const T* col_data = col.data<T>();
|
||||||
|
|
||||||
|
for (int c = 0; c < channels_col; ++c) {
|
||||||
|
int w_offset = c % filter_width;
|
||||||
|
int h_offset = (c / filter_width) % filter_height;
|
||||||
|
int d_offset = (c / filter_width / filter_height) % filter_depth;
|
||||||
|
int cIm = c / filter_width / filter_height / filter_depth;
|
||||||
|
for (int d = 0; d < output_depth; ++d) {
|
||||||
|
int d_pad = d * stride_depth - padding_depth + d_offset;
|
||||||
|
for (int h = 0; h < output_height; ++h) {
|
||||||
|
int h_pad = h * stride_height - padding_height + h_offset;
|
||||||
|
for (int w = 0; w < output_width; ++w) {
|
||||||
|
int w_pad = w * stride_width - padding_width + w_offset;
|
||||||
|
|
||||||
|
if (h_pad >= 0 && h_pad < input_height && w_pad >= 0 &&
|
||||||
|
w_pad < input_width && d_pad >= 0 && d_pad < input_depth) {
|
||||||
|
int vol_idx =
|
||||||
|
((cIm * input_depth + d_pad) * input_height + h_pad) *
|
||||||
|
input_width +
|
||||||
|
w_pad;
|
||||||
|
int col_idx =
|
||||||
|
((c * output_depth + d) * output_height + h) * output_width +
|
||||||
|
w;
|
||||||
|
vol_data[vol_idx] += col_data[col_idx];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template class Vol2ColFunctor<platform::CPUPlace, float>;
|
||||||
|
template class Vol2ColFunctor<platform::CPUPlace, double>;
|
||||||
|
template class Col2VolFunctor<platform::CPUPlace, float>;
|
||||||
|
template class Col2VolFunctor<platform::CPUPlace, double>;
|
||||||
|
|
||||||
|
} // namespace math
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,204 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/math/vol2col.h"
|
||||||
|
#include "paddle/platform/cuda_helper.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
namespace math {
|
||||||
|
|
||||||
|
template <class T>
|
||||||
|
__global__ void vol2col(int num_kernels, const T* data_vol, int depth,
|
||||||
|
int height, int width, int filter_depth,
|
||||||
|
int filter_height, int filter_width, int stride_depth,
|
||||||
|
int stride_height, int stride_width, int padding_depth,
|
||||||
|
int padding_height, int padding_width, int output_detph,
|
||||||
|
int output_height, int output_width, T* data_col) {
|
||||||
|
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels;
|
||||||
|
index += blockDim.x * gridDim.x) {
|
||||||
|
int w_out = index % output_width;
|
||||||
|
int h_out = (index / output_width) % output_height;
|
||||||
|
int d_out = (index / output_width / output_height) % output_detph;
|
||||||
|
int channel_in = index / output_width / output_height / output_detph;
|
||||||
|
int channel_out = channel_in * filter_depth * filter_height * filter_width;
|
||||||
|
int w_in = w_out * stride_width - padding_width;
|
||||||
|
int h_in = h_out * stride_height - padding_height;
|
||||||
|
int d_in = d_out * stride_depth - padding_depth;
|
||||||
|
|
||||||
|
data_col += ((channel_out * output_detph + d_out) * output_height + h_out) *
|
||||||
|
output_width +
|
||||||
|
w_out;
|
||||||
|
data_vol += ((channel_in * depth + d_in) * height + h_in) * width + w_in;
|
||||||
|
for (int k = 0; k < filter_depth; ++k) {
|
||||||
|
for (int i = 0; i < filter_height; ++i) {
|
||||||
|
for (int j = 0; j < filter_width; ++j) {
|
||||||
|
int d = d_in + k;
|
||||||
|
int h = h_in + i;
|
||||||
|
int w = w_in + j;
|
||||||
|
*data_col = (d >= 0 && d < depth && h >= 0 && h < height && w >= 0 &&
|
||||||
|
w < width)
|
||||||
|
? data_vol[(k * height + i) * width + j]
|
||||||
|
: 0;
|
||||||
|
data_col += output_detph * output_height * output_width;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* im = [input_channels,intpu_depth, input_height, input_width]
|
||||||
|
* col =
|
||||||
|
* [input_channels, filter_depth, filter_height, filter_width,
|
||||||
|
* output_depth, output_height, output_width]
|
||||||
|
*/
|
||||||
|
template <class T>
|
||||||
|
class Vol2ColFunctor<platform::GPUPlace, T> {
|
||||||
|
public:
|
||||||
|
void operator()(const platform::DeviceContext& context,
|
||||||
|
const framework::Tensor& vol, framework::Tensor& col,
|
||||||
|
int stride_depth, int stride_height, int stride_width,
|
||||||
|
int padding_depth, int padding_height,
|
||||||
|
int padding_width) const {
|
||||||
|
PADDLE_ENFORCE(vol.dims().size() == 4);
|
||||||
|
PADDLE_ENFORCE(col.dims().size() == 7);
|
||||||
|
|
||||||
|
int input_channels = vol.dims()[0];
|
||||||
|
int input_depth = vol.dims()[1];
|
||||||
|
int input_height = vol.dims()[2];
|
||||||
|
int input_width = vol.dims()[3];
|
||||||
|
int filter_depth = col.dims()[1];
|
||||||
|
int filter_height = col.dims()[2];
|
||||||
|
int filter_width = col.dims()[3];
|
||||||
|
int output_depth = col.dims()[4];
|
||||||
|
int output_height = col.dims()[5];
|
||||||
|
int output_width = col.dims()[6];
|
||||||
|
|
||||||
|
int num_outputs =
|
||||||
|
input_channels * output_depth * output_height * output_width;
|
||||||
|
|
||||||
|
const int threads = 1024;
|
||||||
|
const int blocks = (num_outputs + 1024 - 1) / 1024;
|
||||||
|
vol2col<T><<<blocks, threads, 0,
|
||||||
|
reinterpret_cast<const platform::CUDADeviceContext&>(context)
|
||||||
|
.stream()>>>(
|
||||||
|
num_outputs, vol.data<T>(), input_depth, input_height, input_width,
|
||||||
|
filter_depth, filter_height, filter_width, stride_depth, stride_height,
|
||||||
|
stride_width, padding_depth, padding_height, padding_width,
|
||||||
|
output_depth, output_height, output_width, col.data<T>());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <class T>
|
||||||
|
__global__ void col2vol(int num_kernels, const T* data_col, int depth,
|
||||||
|
int height, int width, int filter_depth,
|
||||||
|
int filter_height, int filter_width, int stride_depth,
|
||||||
|
int stride_height, int stride_width, int padding_depth,
|
||||||
|
int padding_height, int padding_width, int output_detph,
|
||||||
|
int output_height, int output_width, T* data_vol) {
|
||||||
|
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels;
|
||||||
|
index += blockDim.x * gridDim.x) {
|
||||||
|
T src_val = 0;
|
||||||
|
int w = index % width + padding_width;
|
||||||
|
int h = (index / width) % height + padding_height;
|
||||||
|
int d = (index / width / height) % depth + padding_depth;
|
||||||
|
int c = index / width / height / depth;
|
||||||
|
// compute the start and end of the output
|
||||||
|
int w_col_start =
|
||||||
|
(w < filter_width) ? 0 : (w - filter_width) / stride_width + 1;
|
||||||
|
int w_col_end = min(w / stride_width + 1, output_width);
|
||||||
|
int h_col_start =
|
||||||
|
(h < filter_height) ? 0 : (h - filter_height) / stride_height + 1;
|
||||||
|
int h_col_end = min(h / stride_height + 1, output_height);
|
||||||
|
int d_col_start =
|
||||||
|
(d < filter_depth) ? 0 : (d - filter_depth) / stride_depth + 1;
|
||||||
|
int d_col_end = min(d / stride_depth + 1, output_detph);
|
||||||
|
|
||||||
|
int offset = (c * filter_depth * filter_height * filter_width +
|
||||||
|
d * filter_width * filter_height + h * filter_width + w) *
|
||||||
|
output_detph * output_height * output_width;
|
||||||
|
|
||||||
|
int coeff_d_col =
|
||||||
|
(1 - stride_depth * filter_width * filter_height * output_detph) *
|
||||||
|
output_height * output_width;
|
||||||
|
int coeff_h_col =
|
||||||
|
(1 - stride_height * filter_width * output_detph * output_height) *
|
||||||
|
output_width;
|
||||||
|
int coeff_w_col =
|
||||||
|
(1 - stride_width * output_detph * output_height * output_width);
|
||||||
|
|
||||||
|
for (int d_col = d_col_start; d_col < d_col_end; ++d_col) {
|
||||||
|
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
|
||||||
|
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
|
||||||
|
src_val += data_col[offset + d_col * coeff_d_col +
|
||||||
|
h_col * coeff_h_col + w_col * coeff_w_col];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
data_vol[index] = src_val;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* im = [input_channels, input_depth, input_height, input_width]
|
||||||
|
* col =
|
||||||
|
* [input_channels, filter_depth, filter_height, filter_width,
|
||||||
|
* output_depth, output_height, output_width]
|
||||||
|
*/
|
||||||
|
template <class T>
|
||||||
|
class Col2VolFunctor<platform::GPUPlace, T> {
|
||||||
|
public:
|
||||||
|
void operator()(const platform::DeviceContext& context,
|
||||||
|
framework::Tensor& vol, const framework::Tensor& col,
|
||||||
|
int stride_depth, int stride_height, int stride_width,
|
||||||
|
int padding_depth, int padding_height,
|
||||||
|
int padding_width) const {
|
||||||
|
PADDLE_ENFORCE(vol.dims().size() == 4);
|
||||||
|
PADDLE_ENFORCE(col.dims().size() == 7);
|
||||||
|
|
||||||
|
int input_channels = vol.dims()[0];
|
||||||
|
int input_depth = vol.dims()[1];
|
||||||
|
int input_height = vol.dims()[2];
|
||||||
|
int input_width = vol.dims()[3];
|
||||||
|
int filter_depth = col.dims()[1];
|
||||||
|
int filter_height = col.dims()[2];
|
||||||
|
int filter_width = col.dims()[3];
|
||||||
|
int output_depth = col.dims()[4];
|
||||||
|
int output_height = col.dims()[5];
|
||||||
|
int output_width = col.dims()[6];
|
||||||
|
|
||||||
|
int num_kernels = input_channels * input_depth * input_height * input_width;
|
||||||
|
|
||||||
|
const int threads = 1024;
|
||||||
|
const int blocks = (num_kernels + 1024 - 1) / 1024;
|
||||||
|
|
||||||
|
col2vol<T><<<blocks, threads, 0,
|
||||||
|
reinterpret_cast<const platform::CUDADeviceContext&>(context)
|
||||||
|
.stream()>>>(
|
||||||
|
num_kernels, col.data<T>(), input_depth, input_height, input_width,
|
||||||
|
filter_depth, filter_height, filter_width, stride_depth, stride_height,
|
||||||
|
stride_width, padding_depth, padding_height, padding_width,
|
||||||
|
output_depth, output_height, output_width, vol.data<T>());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template class Vol2ColFunctor<platform::GPUPlace, float>;
|
||||||
|
template class Vol2ColFunctor<platform::GPUPlace, double>;
|
||||||
|
template class Col2VolFunctor<platform::GPUPlace, float>;
|
||||||
|
template class Col2VolFunctor<platform::GPUPlace, double>;
|
||||||
|
|
||||||
|
} // namespace math
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,78 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "paddle/framework/tensor.h"
|
||||||
|
#include "paddle/platform/device_context.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
namespace math {
|
||||||
|
/*
|
||||||
|
* \brief Converts the feature data of four dimensions(CDHW) into a colData of
|
||||||
|
* seven dimensions in the Vol2ColFunctor calculation,
|
||||||
|
* And in the Col2VolFunctor calculation, it is reversed.
|
||||||
|
*
|
||||||
|
* \param volData Vol data.
|
||||||
|
* \param volShape The shape of volData,
|
||||||
|
* [input_channels, input_depth, input_height, input_width].
|
||||||
|
* \param colData Column data.
|
||||||
|
* \param colShape The shape of colData.
|
||||||
|
*
|
||||||
|
* The shape of colData is:
|
||||||
|
* [input_channels, filter_depth, filter_height, filter_width, output_depth,
|
||||||
|
* output_height, output_width]
|
||||||
|
* So, it is easy to reshape into a convolution matrix for convolution
|
||||||
|
* calculation based on matrix multiplication.
|
||||||
|
* The shape of convolution matrix is [height, width], where the height is equal
|
||||||
|
* input_channels * filter_depth * filter_height * filter_width, and the width
|
||||||
|
* is equal output_depth * output_height * output_width.
|
||||||
|
*
|
||||||
|
* Reshape:
|
||||||
|
* shape of colData shape of convolution matrix
|
||||||
|
* [input_channels,
|
||||||
|
* filter_depth,
|
||||||
|
* filter_height,
|
||||||
|
* filter_width, ======> [height, width]
|
||||||
|
* output_depth,
|
||||||
|
* output_height,
|
||||||
|
* output_width]
|
||||||
|
*
|
||||||
|
* \note The caller needs to ensure that volShape.inputChannels is equal to
|
||||||
|
* colShape.inputChannels.
|
||||||
|
*/
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class Vol2ColFunctor {
|
||||||
|
public:
|
||||||
|
void operator()(const platform::DeviceContext& context,
|
||||||
|
const framework::Tensor& vol, framework::Tensor& col,
|
||||||
|
int stride_depth, int stride_height, int stride_width,
|
||||||
|
int padding_depth, int padding_height,
|
||||||
|
int padding_width) const;
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class Col2VolFunctor {
|
||||||
|
public:
|
||||||
|
void operator()(const platform::DeviceContext& context,
|
||||||
|
framework::Tensor& vol, const framework::Tensor& col,
|
||||||
|
int stride_depth, int stride_height, int stride_width,
|
||||||
|
int padding_depth, int padding_height,
|
||||||
|
int padding_width) const;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace math
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,156 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/math/vol2col.h"
|
||||||
|
#include <gtest/gtest.h>
|
||||||
|
#include <iostream>
|
||||||
|
|
||||||
|
template <typename Place>
|
||||||
|
void testVol2col() {
|
||||||
|
paddle::framework::Tensor input_tmp;
|
||||||
|
paddle::framework::Tensor input;
|
||||||
|
paddle::framework::Tensor output_cfo;
|
||||||
|
paddle::framework::Tensor output_ocf;
|
||||||
|
paddle::framework::Tensor output_tmp;
|
||||||
|
|
||||||
|
auto* place = new Place();
|
||||||
|
paddle::platform::DeviceContext* context;
|
||||||
|
if (paddle::platform::is_cpu_place(*place)) {
|
||||||
|
context =
|
||||||
|
new paddle::platform::CPUDeviceContext(paddle::platform::CPUPlace());
|
||||||
|
} else {
|
||||||
|
#ifndef PADDLE_ONLY_CPU
|
||||||
|
context =
|
||||||
|
new paddle::platform::CUDADeviceContext(paddle::platform::GPUPlace());
|
||||||
|
#else
|
||||||
|
PADDLE_THROW("no GPU support");
|
||||||
|
#endif // PADDLE_ONLY_CPU
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* input = [[0, 1, 2,
|
||||||
|
* 3, 4, 5]
|
||||||
|
* [6, 7, 8,
|
||||||
|
* 9, 10, 11]]
|
||||||
|
*
|
||||||
|
* output_cfo = [0, 1
|
||||||
|
* 1, 2
|
||||||
|
* 3, 4
|
||||||
|
* 4, 5
|
||||||
|
* 6, 7
|
||||||
|
* 7, 8
|
||||||
|
* 9, 10
|
||||||
|
* 10, 11]
|
||||||
|
*
|
||||||
|
* col2vol = [[0, 2, 2,
|
||||||
|
* 3, 8, 5]
|
||||||
|
* [6, 14, 8,
|
||||||
|
* 9, 20, 11]]
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
int input_depth = 2;
|
||||||
|
int input_height = 2;
|
||||||
|
int input_width = 3;
|
||||||
|
int filter_size = 2;
|
||||||
|
int stride = 1;
|
||||||
|
int padding = 0;
|
||||||
|
int output_depth = (input_depth - filter_size + 2 * padding) / stride + 1;
|
||||||
|
int output_height = (input_height - filter_size + 2 * padding) / stride + 1;
|
||||||
|
int output_width = (input_width - filter_size + 2 * padding) / stride + 1;
|
||||||
|
|
||||||
|
// Vol2Col test
|
||||||
|
float* input_ptr =
|
||||||
|
input_tmp.mutable_data<float>({1, input_depth, input_height, input_width},
|
||||||
|
paddle::platform::CPUPlace());
|
||||||
|
float arr[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
|
||||||
|
memcpy(input_ptr, arr, 12 * sizeof(float));
|
||||||
|
|
||||||
|
if (paddle::platform::is_cpu_place(*place)) {
|
||||||
|
input = input_tmp;
|
||||||
|
} else {
|
||||||
|
input.CopyFrom<float>(input_tmp, *place);
|
||||||
|
}
|
||||||
|
output_cfo.mutable_data<float>({1, filter_size, filter_size, filter_size,
|
||||||
|
output_depth, output_height, output_width},
|
||||||
|
*place);
|
||||||
|
|
||||||
|
paddle::operators::math::Vol2ColFunctor<Place, float> vol2col;
|
||||||
|
vol2col(*context, input, output_cfo, stride, stride, stride, padding, padding,
|
||||||
|
padding);
|
||||||
|
|
||||||
|
float* out_cfo_ptr;
|
||||||
|
if (paddle::platform::is_cpu_place(*place)) {
|
||||||
|
out_cfo_ptr = output_cfo.data<float>();
|
||||||
|
} else {
|
||||||
|
output_tmp.CopyFrom<float>(output_cfo, paddle::platform::CPUPlace());
|
||||||
|
out_cfo_ptr = output_tmp.data<float>();
|
||||||
|
}
|
||||||
|
|
||||||
|
EXPECT_EQ(out_cfo_ptr[0], 0);
|
||||||
|
EXPECT_EQ(out_cfo_ptr[1], 1);
|
||||||
|
EXPECT_EQ(out_cfo_ptr[2], 1);
|
||||||
|
EXPECT_EQ(out_cfo_ptr[3], 2);
|
||||||
|
EXPECT_EQ(out_cfo_ptr[4], 3);
|
||||||
|
EXPECT_EQ(out_cfo_ptr[5], 4);
|
||||||
|
EXPECT_EQ(out_cfo_ptr[6], 4);
|
||||||
|
EXPECT_EQ(out_cfo_ptr[7], 5);
|
||||||
|
EXPECT_EQ(out_cfo_ptr[8], 6);
|
||||||
|
EXPECT_EQ(out_cfo_ptr[9], 7);
|
||||||
|
EXPECT_EQ(out_cfo_ptr[10], 7);
|
||||||
|
EXPECT_EQ(out_cfo_ptr[11], 8);
|
||||||
|
EXPECT_EQ(out_cfo_ptr[12], 9);
|
||||||
|
EXPECT_EQ(out_cfo_ptr[13], 10);
|
||||||
|
EXPECT_EQ(out_cfo_ptr[14], 10);
|
||||||
|
EXPECT_EQ(out_cfo_ptr[15], 11);
|
||||||
|
|
||||||
|
// Col2Vol test
|
||||||
|
memset(input_ptr, 0, 12 * sizeof(float));
|
||||||
|
if (paddle::platform::is_cpu_place(*place)) {
|
||||||
|
input = input_tmp;
|
||||||
|
} else {
|
||||||
|
input.CopyFrom<float>(input_tmp, *place);
|
||||||
|
}
|
||||||
|
|
||||||
|
paddle::operators::math::Col2VolFunctor<Place, float> col2vol;
|
||||||
|
col2vol(*context, input, output_cfo, stride, stride, stride, padding, padding,
|
||||||
|
padding);
|
||||||
|
|
||||||
|
float* in_cfo_ptr;
|
||||||
|
if (paddle::platform::is_cpu_place(*place)) {
|
||||||
|
in_cfo_ptr = input.data<float>();
|
||||||
|
} else {
|
||||||
|
input_tmp.CopyFrom<float>(input, paddle::platform::CPUPlace());
|
||||||
|
in_cfo_ptr = input_tmp.data<float>();
|
||||||
|
}
|
||||||
|
|
||||||
|
EXPECT_EQ(in_cfo_ptr[0], 0);
|
||||||
|
EXPECT_EQ(in_cfo_ptr[1], 2);
|
||||||
|
EXPECT_EQ(in_cfo_ptr[2], 2);
|
||||||
|
EXPECT_EQ(in_cfo_ptr[3], 3);
|
||||||
|
EXPECT_EQ(in_cfo_ptr[4], 8);
|
||||||
|
EXPECT_EQ(in_cfo_ptr[5], 5);
|
||||||
|
EXPECT_EQ(in_cfo_ptr[6], 6);
|
||||||
|
EXPECT_EQ(in_cfo_ptr[7], 14);
|
||||||
|
EXPECT_EQ(in_cfo_ptr[8], 8);
|
||||||
|
EXPECT_EQ(in_cfo_ptr[9], 9);
|
||||||
|
EXPECT_EQ(in_cfo_ptr[10], 20);
|
||||||
|
EXPECT_EQ(in_cfo_ptr[11], 11);
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(math, vol2col) {
|
||||||
|
testVol2col<paddle::platform::CPUPlace>();
|
||||||
|
#ifndef PADDLE_ONLY_CPU
|
||||||
|
testVol2col<paddle::platform::GPUPlace>();
|
||||||
|
#endif
|
||||||
|
}
|
Loading…
Reference in new issue