Merge pull request #1324 from reyoung/feature/new_api

Draft for new API
avx_docs
Yu Yang 9 years ago committed by GitHub
commit be3f7cb95d

@ -0,0 +1,62 @@
from paddle.trainer_config_helpers import *
from paddle.trainer.PyDataProvider2 import dense_vector, integer_value
import paddle.v2 as paddle
import numpy
import mnist_util
def train_reader():
train_file = './data/raw_data/train'
generator = mnist_util.read_from_mnist(train_file)
for item in generator:
yield item
def network_config():
imgs = data_layer(name='pixel', size=784)
hidden1 = fc_layer(input=imgs, size=200)
hidden2 = fc_layer(input=hidden1, size=200)
inference = fc_layer(input=hidden2, size=10, act=SoftmaxActivation())
cost = classification_cost(
input=inference, label=data_layer(
name='label', size=10))
outputs(cost)
def main():
paddle.init(use_gpu=False, trainer_count=1)
topology = parse_network_config(network_config)
parameters = paddle.parameters.create(topology)
for param_name in parameters.keys():
array = parameters.get(param_name)
array[:] = numpy.random.uniform(low=-1.0, high=1.0, size=array.shape)
parameters.set(parameter_name=param_name, value=array)
adam_optimizer = paddle.optimizer.Optimizer(
learning_rate=0.01, learning_method=AdamOptimizer())
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
para = parameters.get('___fc_layer_2__.w0')
print "Pass %d, Batch %d, Cost %f, Weight Mean Of Fc 2 is %f" % (
event.pass_id, event.batch_id, event.cost, para.mean())
else:
pass
trainer = paddle.trainer.SGD(update_equation=adam_optimizer)
trainer.train(train_data_reader=train_reader,
topology=topology,
parameters=parameters,
event_handler=event_handler,
batch_size=32, # batch size should be refactor in Data reader
data_types={ # data_types will be removed, It should be in
# network topology
'pixel': dense_vector(784),
'label': integer_value(10)
})
if __name__ == '__main__':
main()

@ -11,7 +11,18 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import optimizer
import parameters
import py_paddle.swig_paddle as api
import trainer
import event
__all__ = ['optimizer', 'parameters', 'init', 'trainer', 'event']
def init(**kwargs):
args = []
for key in kwargs.keys():
args.append('--%s=%s' % (key, str(kwargs[key])))
__all__ = ['optimizer']
api.initPaddle(*args)

@ -0,0 +1,26 @@
"""
All training events.
There are:
* BeginTraining
* EndTraining
* BeginIteration
* EndIteration
* BeginPass
* EndPass
TODO(yuyang18): Complete it!
"""
__all__ = ['EndIteration']
class EndIteration(object):
"""
Event On One Batch Training Complete.
"""
def __init__(self, pass_id, batch_id, cost):
self.pass_id = pass_id
self.batch_id = batch_id
self.cost = cost

File diff suppressed because it is too large Load Diff

@ -0,0 +1,185 @@
import collections
import py_paddle.swig_paddle as api
from py_paddle import DataProviderConverter
from paddle.proto.ModelConfig_pb2 import ModelConfig
from . import optimizer as v2_optimizer
from . import parameters as v2_parameters
from . import event as v2_event
__all__ = ['ITrainer', 'SGD']
def default_event_handler(event):
"""
Default event handler. It will print some log and save mode.
TODO(yuyang18): Complete it!
:param event:
:return:
"""
pass
class ITrainer(object):
"""
The interface of Trainer. The only exposed method is `train`.
"""
def train(self,
train_data_reader,
topology,
parameters,
test_data_reader=None,
event_handler=None):
"""
train method.
:param train_data_reader:
:param topology:
:param parameters:
:param test_data_reader:
:param event_handler:
:return:
"""
raise NotImplementedError()
class SGD(ITrainer):
def __init__(self, update_equation):
"""
Simple SGD Trainer.
:param update_equation: The optimizer object.
:type update_equation: v2_optimizer.Optimizer
"""
if not isinstance(update_equation, v2_optimizer.Optimizer):
raise ValueError("update equation parameter must be "
"paddle.v2.optimizer.Optimizer")
self.__optimizer__ = update_equation
def train(self,
train_data_reader,
topology,
parameters,
num_passes=1,
test_data_reader=None,
event_handler=None,
batch_size=32,
data_types=None):
"""
Training method. Will train num_passes of input data.
:param train_data_reader:
:param topology: Network Topology, a protobuf ModelConfig message.
:param parameters: The parameter pools.
:param num_passes: The total train passes.
:param test_data_reader:
:param event_handler: Event handler. A method will be invoked when event
occurred.
:type event_handler: (BaseEvent) => None
:param batch_size: Not important, will be removed after data refactor.
:param data_types: Not important, will be removed after data refactor.
:return:
"""
if event_handler is None:
event_handler = default_event_handler
__check_train_args__(**locals())
gm = api.GradientMachine.createFromConfigProto(
topology, api.CREATE_MODE_NORMAL, self.__optimizer__.enable_types())
assert isinstance(gm, api.GradientMachine)
parameters.append_gradient_machine(gm)
updater = self.__optimizer__.create_local_updater()
updater.init(gm)
gm.start()
out_args = api.Arguments.createArguments(0)
data_types_lists = []
for each in topology.input_layer_names:
if each not in data_types:
raise ValueError()
data_types_lists.append(data_types[each])
converter = DataProviderConverter(input_types=data_types_lists)
for pass_id in xrange(num_passes):
updater.startPass()
for batch_id, data_batch in enumerate(
__data_reader_to_batch__(train_data_reader, batch_size,
topology)):
pass_type = updater.startBatch(len(data_batch))
gm.forwardBackward(converter(data_batch), out_args, pass_type)
for each_param in gm.getParameters():
updater.update(each_param)
# Get cost. We use numpy to calculate total cost for this batch.
cost_vec = out_args.getSlotValue(0)
cost_vec = cost_vec.copyToNumpyMat()
cost = cost_vec.sum() / len(data_batch)
updater.finishBatch(cost)
event_handler(
v2_event.EndIteration(
pass_id=pass_id, batch_id=batch_id, cost=cost))
updater.finishPass()
gm.finish()
def __data_reader_to_batch__(reader, batch_size, topology):
"""
This function is not important, and will be removed when data refactored.
"""
def input_reorder(func):
for item in func():
retv = []
for __layer_name__ in topology.input_layer_names:
retv.append(item[__layer_name__])
yield retv
return __generator_to_batch__(input_reorder(reader), batch_size=batch_size)
def __generator_to_batch__(generator, batch_size):
"""
This function is not important, and will be removed when data refactored.
"""
ret_val = list()
for each_item in generator:
ret_val.append(each_item)
if len(ret_val) == batch_size:
yield ret_val
ret_val = list()
if len(ret_val) != 0:
yield ret_val
def __check_train_args__(train_data_reader, topology, parameters,
test_data_reader, event_handler, **kwargs):
"""
Check train function's argument types
"""
if not callable(train_data_reader) or not isinstance(train_data_reader(),
collections.Iterator):
raise ValueError('train_data_reader should be a function, '
'which can return a iterator')
if test_data_reader is not None:
if not callable(test_data_reader) or not isinstance(
test_data_reader(), collections.Iterator):
raise ValueError('test_data_reader should be a function, which can '
'return a iterator')
if not isinstance(topology, ModelConfig):
raise ValueError('topology should be a model config')
if not isinstance(parameters, v2_parameters.Parameters):
raise ValueError('parameters should be a parameter pool')
if not callable(event_handler):
raise ValueError('event handler should be a function')
Loading…
Cancel
Save