|
|
@ -47,7 +47,6 @@ class TranspilerTest(unittest.TestCase):
|
|
|
|
avg_cost = fluid.layers.mean(cost)
|
|
|
|
avg_cost = fluid.layers.mean(cost)
|
|
|
|
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
|
|
|
|
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
|
|
|
|
sgd_optimizer.minimize(avg_cost)
|
|
|
|
sgd_optimizer.minimize(avg_cost)
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_main_program(self):
|
|
|
|
def get_main_program(self):
|
|
|
|
main = fluid.Program()
|
|
|
|
main = fluid.Program()
|
|
|
@ -250,7 +249,6 @@ class TestLRDecay(TranspilerTest):
|
|
|
|
decay_rate=0.1,
|
|
|
|
decay_rate=0.1,
|
|
|
|
staircase=True))
|
|
|
|
staircase=True))
|
|
|
|
sgd_optimizer.minimize(avg_cost)
|
|
|
|
sgd_optimizer.minimize(avg_cost)
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def transpiler_test_impl(self):
|
|
|
|
def transpiler_test_impl(self):
|
|
|
|
pserver, startup = self.get_pserver(self.pserver1_ep)
|
|
|
|
pserver, startup = self.get_pserver(self.pserver1_ep)
|
|
|
@ -280,7 +278,6 @@ class TestLRDecayConditional(TranspilerTest):
|
|
|
|
learning_rate=fluid.layers.piecewise_decay([10000, 20000],
|
|
|
|
learning_rate=fluid.layers.piecewise_decay([10000, 20000],
|
|
|
|
[1.0, 0.5, 1.0]))
|
|
|
|
[1.0, 0.5, 1.0]))
|
|
|
|
sgd_optimizer.minimize(avg_cost)
|
|
|
|
sgd_optimizer.minimize(avg_cost)
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def transpiler_test_impl(self):
|
|
|
|
def transpiler_test_impl(self):
|
|
|
|
pserver, startup = self.get_pserver(self.pserver1_ep)
|
|
|
|
pserver, startup = self.get_pserver(self.pserver1_ep)
|
|
|
@ -329,7 +326,6 @@ class TestL2Decay(TranspilerTest):
|
|
|
|
avg_cost = fluid.layers.mean(cost)
|
|
|
|
avg_cost = fluid.layers.mean(cost)
|
|
|
|
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
|
|
|
|
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
|
|
|
|
sgd_optimizer.minimize(avg_cost)
|
|
|
|
sgd_optimizer.minimize(avg_cost)
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def transpiler_test_impl(self):
|
|
|
|
def transpiler_test_impl(self):
|
|
|
|
pserver, startup = self.get_pserver(self.pserver1_ep)
|
|
|
|
pserver, startup = self.get_pserver(self.pserver1_ep)
|
|
|
@ -364,7 +360,6 @@ class TestL2DecayWithPiecewise(TranspilerTest):
|
|
|
|
momentum=0.9,
|
|
|
|
momentum=0.9,
|
|
|
|
regularization=fluid.regularizer.L2Decay(1e-4))
|
|
|
|
regularization=fluid.regularizer.L2Decay(1e-4))
|
|
|
|
sgd_optimizer.minimize(avg_cost)
|
|
|
|
sgd_optimizer.minimize(avg_cost)
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def transpiler_test_impl(self):
|
|
|
|
def transpiler_test_impl(self):
|
|
|
|
pserver, startup = self.get_pserver(self.pserver1_ep)
|
|
|
|
pserver, startup = self.get_pserver(self.pserver1_ep)
|
|
|
@ -589,8 +584,6 @@ class TestDistArgsInProgram(TestDistLookupTableBase):
|
|
|
|
self.network_with_table(is_sparse=True, is_distributed=True)
|
|
|
|
self.network_with_table(is_sparse=True, is_distributed=True)
|
|
|
|
|
|
|
|
|
|
|
|
def transpiler_test_impl(self):
|
|
|
|
def transpiler_test_impl(self):
|
|
|
|
config = fluid.DistributeTranspilerConfig()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
trainer, _ = self.get_trainer()
|
|
|
|
trainer, _ = self.get_trainer()
|
|
|
|
|
|
|
|
|
|
|
|
self.assertTrue(trainer._is_distributed)
|
|
|
|
self.assertTrue(trainer._is_distributed)
|
|
|
@ -614,7 +607,6 @@ class TestRMSPropOptimizer(TranspilerTest):
|
|
|
|
avg_cost = fluid.layers.mean(cost)
|
|
|
|
avg_cost = fluid.layers.mean(cost)
|
|
|
|
optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
|
|
|
|
optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
|
|
|
|
optimizer.minimize(avg_cost)
|
|
|
|
optimizer.minimize(avg_cost)
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def transpiler_test_impl(self):
|
|
|
|
def transpiler_test_impl(self):
|
|
|
|
pserver, startup = self.get_pserver(self.pserver1_ep)
|
|
|
|
pserver, startup = self.get_pserver(self.pserver1_ep)
|
|
|
@ -644,7 +636,6 @@ class TestLoadSliceVar(TranspilerTest):
|
|
|
|
avg_cost = fluid.layers.mean(cost)
|
|
|
|
avg_cost = fluid.layers.mean(cost)
|
|
|
|
optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
|
|
|
|
optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
|
|
|
|
optimizer.minimize(avg_cost)
|
|
|
|
optimizer.minimize(avg_cost)
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def transpiler_test_impl(self):
|
|
|
|
def transpiler_test_impl(self):
|
|
|
|
pserver, _ = self.get_pserver(self.pserver1_ep)
|
|
|
|
pserver, _ = self.get_pserver(self.pserver1_ep)
|
|
|
|