parent
6fb310ae29
commit
bfb6ac816e
@ -0,0 +1,83 @@
|
|||||||
|
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
from collections import Counter
|
||||||
|
import unittest
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
from simple_nets import init_data
|
||||||
|
|
||||||
|
|
||||||
|
def test_trainable():
|
||||||
|
x = fluid.layers.data(name='image', shape=[784], dtype='float32')
|
||||||
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
||||||
|
feature = fluid.layers.fc(input=x,
|
||||||
|
size=10,
|
||||||
|
param_attr=fluid.ParamAttr(trainable=False))
|
||||||
|
loss = fluid.layers.cross_entropy(input=feature, label=label)
|
||||||
|
loss = fluid.layers.mean(loss)
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
class TestTrainable(unittest.TestCase):
|
||||||
|
def check_trainable(self,
|
||||||
|
model,
|
||||||
|
feed_dict,
|
||||||
|
op_count,
|
||||||
|
optimizer=fluid.optimizer.Adam()):
|
||||||
|
place = fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
|
||||||
|
main = fluid.Program()
|
||||||
|
startup = fluid.Program()
|
||||||
|
|
||||||
|
with fluid.program_guard(main, startup):
|
||||||
|
loss = model()
|
||||||
|
optimizer.minimize(loss)
|
||||||
|
|
||||||
|
# The number of adam should be one.
|
||||||
|
ops = Counter([op.type for op in main.global_block().ops])
|
||||||
|
for op in op_count:
|
||||||
|
if op_count[op] == 0:
|
||||||
|
assert op not in ops
|
||||||
|
else:
|
||||||
|
assert ops[op] == op_count[op]
|
||||||
|
|
||||||
|
exe.run(fluid.default_startup_program())
|
||||||
|
exe.run(feed=feed_dict)
|
||||||
|
|
||||||
|
def test_trainable(self):
|
||||||
|
batch_size = 2
|
||||||
|
img, label = init_data(batch_size, img_shape=[784], label_range=9)
|
||||||
|
feed_dict = {'image': img, 'label': label}
|
||||||
|
# Note that, because the Weight of FC is not trainable and the x is stop_gradient,
|
||||||
|
# so the 'mul_grad' should not be appended.
|
||||||
|
self.check_trainable(
|
||||||
|
test_trainable,
|
||||||
|
feed_dict,
|
||||||
|
op_count={'adam': 1,
|
||||||
|
'scale': 2,
|
||||||
|
'mul_grad': 0})
|
||||||
|
self.check_trainable(
|
||||||
|
test_trainable,
|
||||||
|
feed_dict,
|
||||||
|
op_count={'adamax': 1,
|
||||||
|
'scale': 1,
|
||||||
|
'mul_grad': 0},
|
||||||
|
optimizer=fluid.optimizer.Adamax(learning_rate=0.2))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue