parent
8a42a54968
commit
c0e687b939
@ -0,0 +1,12 @@
|
|||||||
|
import py_paddle.swig_paddle as api
|
||||||
|
from paddle.trainer.config_parser import parse_config
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
api.initPaddle("-use_gpu=false", "-trainer_count=4") # use 4 cpu cores
|
||||||
|
config = parse_config('simple_mnist_network.py', '')
|
||||||
|
m = api.GradientMachine.createFromConfigProto(config.model_config)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
@ -0,0 +1,16 @@
|
|||||||
|
from paddle.trainer_config_helpers import *
|
||||||
|
|
||||||
|
settings(learning_rate=1e-4, learning_method=AdamOptimizer(), batch_size=1000)
|
||||||
|
|
||||||
|
imgs = data_layer(name='pixel', size=784)
|
||||||
|
|
||||||
|
hidden1 = fc_layer(input=imgs, size=200)
|
||||||
|
hidden2 = fc_layer(input=hidden1, size=200)
|
||||||
|
|
||||||
|
inference = fc_layer(input=hidden2, size=10, act=SoftmaxActivation())
|
||||||
|
|
||||||
|
cost = classification_cost(
|
||||||
|
input=inference, label=data_layer(
|
||||||
|
name='label', size=10))
|
||||||
|
|
||||||
|
outputs(cost)
|
Loading…
Reference in new issue