parent
0d9846f3c0
commit
c108d6108c
@ -0,0 +1,71 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/identity_op.h"
|
||||||
|
#include "paddle/operators/net_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
class IdentityOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
IdentityOp(const std::string &type, const VarNameMap &inputs,
|
||||||
|
const VarNameMap &outputs, const framework::AttributeMap &attrs)
|
||||||
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||||
|
auto *in = ctx.Input<framework::Tensor>("X");
|
||||||
|
auto *out = ctx.Output<framework::Tensor>("Out");
|
||||||
|
out->Resize(in->dims());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class IdentityOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
IdentityOpMaker(framework::OpProto *proto,
|
||||||
|
framework::OpAttrChecker *op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput("X", "The input tensor of identity operator.").NotInGradient();
|
||||||
|
AddOutput("Out", "The output tensor of identity operator.").NotInGradient();
|
||||||
|
AddComment(R"DOC(Identity operator
|
||||||
|
|
||||||
|
The equation is: Out = X
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
// Identity Op's gradient is identity op, too.
|
||||||
|
// Grad(Out=identity_op(X)) => Grad(X) = identity_op(Grad(Out))
|
||||||
|
class IdentityGradOp : public NetOp {
|
||||||
|
public:
|
||||||
|
IdentityGradOp(const std::string &type, const VarNameMap &inputs,
|
||||||
|
const VarNameMap &outputs,
|
||||||
|
const framework::AttributeMap &attrs)
|
||||||
|
: NetOp(type, inputs, outputs, attrs) {
|
||||||
|
AddOp(framework::OpRegistry::CreateOp(
|
||||||
|
"identity", {{"X", {Input(framework::GradVarName("Out"))}}},
|
||||||
|
{{"Out", {Output(framework::GradVarName("X"))}}}, {}));
|
||||||
|
CompleteAddOp(false);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
|
||||||
|
REGISTER_OP(identity, ops::IdentityOp, ops::IdentityOpMaker, identity_grad,
|
||||||
|
ops::IdentityGradOp);
|
||||||
|
REGISTER_OP_CPU_KERNEL(identity, ops::IdentityKernel<float>);
|
@ -0,0 +1,17 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/identity_op.h"
|
||||||
|
|
||||||
|
REGISTER_OP_GPU_KERNEL(identity, paddle::operators::IdentityKernel<float>);
|
@ -0,0 +1,32 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "paddle/framework/op_registry.h"
|
||||||
|
#include "paddle/memory/memcpy.h"
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
template <typename T>
|
||||||
|
class IdentityKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
virtual void Compute(const framework::ExecutionContext& context) const {
|
||||||
|
auto* tensor = context.Output<framework::Tensor>("Out");
|
||||||
|
auto* in = context.Input<framework::Tensor>("X");
|
||||||
|
tensor->CopyFrom<T>(*in, in->place());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,24 @@
|
|||||||
|
import unittest
|
||||||
|
from op_test_util import OpTestMeta
|
||||||
|
from gradient_checker import GradientChecker, create_op
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
class IdentityTest(unittest.TestCase):
|
||||||
|
__metaclass__ = OpTestMeta
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
self.type = "identity"
|
||||||
|
self.inputs = {'X': np.random.random((32, 784)).astype("float32")}
|
||||||
|
self.outputs = {'Out': self.inputs['X']}
|
||||||
|
|
||||||
|
|
||||||
|
class IdentityGradOpTest(GradientChecker):
|
||||||
|
def test_normal(self):
|
||||||
|
op = create_op("identity")
|
||||||
|
inputs = {"X": np.random.random((10, 10)).astype("float32")}
|
||||||
|
self.check_grad(op, inputs, set("X"), "Out")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue