convert all tests to new CompiledProgram API

test=develop
recover_files
Xin Pan 7 years ago
parent 485d32102d
commit c27008c408

@ -22,6 +22,7 @@ import unittest
import paddle import paddle
import paddle.fluid.core as core import paddle.fluid.core as core
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid import compiler
def train(network, use_cuda, use_parallel_executor, batch_size=32, pass_num=2): def train(network, use_cuda, use_parallel_executor, batch_size=32, pass_num=2):
@ -57,19 +58,19 @@ def train(network, use_cuda, use_parallel_executor, batch_size=32, pass_num=2):
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
train_cp = compiler.CompiledProgram(fluid.default_main_program())
if use_parallel_executor: if use_parallel_executor:
train_exe = fluid.ParallelExecutor( train_cp = train_cp.with_data_parallel(loss_name=cost.name)
use_cuda=use_cuda, loss_name=cost.name)
fetch_list = [cost.name] fetch_list = [cost.name]
else: else:
train_exe = exe
fetch_list = [cost] fetch_list = [cost]
for pass_id in six.moves.xrange(pass_num): for pass_id in six.moves.xrange(pass_num):
batch_id = 0 batch_id = 0
for data in reader(): for data in reader():
train_exe.run(feed=data, exe.run(train_cp,
fetch_list=fetch_list if batch_id % 4 == 0 else []) feed=data,
fetch_list=fetch_list if batch_id % 4 == 0 else [])
batch_id += 1 batch_id += 1
if batch_id > 16: if batch_id > 16:
break break

@ -16,6 +16,7 @@ from __future__ import print_function
import paddle.dataset.conll05 as conll05 import paddle.dataset.conll05 as conll05
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid import compiler
import paddle.fluid.core as core import paddle.fluid.core as core
import unittest import unittest
import paddle import paddle
@ -157,10 +158,8 @@ class TestCRFModel(unittest.TestCase):
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(startup) exe.run(startup)
pe = fluid.ParallelExecutor( train_cp = compiler.CompiledProgram(main).with_data_parallel(
use_cuda=use_cuda, loss_name=avg_cost.name, build_strategy=build_strategy)
loss_name=avg_cost.name,
build_strategy=build_strategy)
feeder = fluid.DataFeeder( feeder = fluid.DataFeeder(
feed_list=[ feed_list=[
@ -172,8 +171,9 @@ class TestCRFModel(unittest.TestCase):
data = train_data() data = train_data()
for i in range(10): for i in range(10):
cur_batch = next(data) cur_batch = next(data)
print(pe.run(feed=feeder.feed(cur_batch), print(exe.run(train_cp,
fetch_list=[avg_cost.name])[0]) feed=feeder.feed(cur_batch),
fetch_list=[avg_cost.name])[0])
def _new_build_strategy(self, use_reduce=False): def _new_build_strategy(self, use_reduce=False):
build_strategy = fluid.BuildStrategy() build_strategy = fluid.BuildStrategy()

@ -13,6 +13,7 @@
# limitations under the License. # limitations under the License.
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid import compiler
import unittest import unittest
import logging import logging
import six import six
@ -36,21 +37,18 @@ class TestBase(unittest.TestCase):
with fluid.program_guard(main_prog, startup_prog): with fluid.program_guard(main_prog, startup_prog):
with fluid.scope_guard(scope): with fluid.scope_guard(scope):
loss = network_func() loss = network_func()
fluid.Executor( exe = fluid.Executor(
fluid.CUDAPlace(0) fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace())
if use_gpu else fluid.CPUPlace()).run(startup_prog) exe.run(startup_prog)
for _ in six.moves.xrange(iter): for _ in six.moves.xrange(iter):
exe_strategy = fluid.ExecutionStrategy() exe_strategy = fluid.ExecutionStrategy()
exe_strategy._dry_run = True exe_strategy._dry_run = True
exe_strategy.use_experimental_executor = use_experimental_executor exe_strategy.use_experimental_executor = use_experimental_executor
pe = fluid.ParallelExecutor( train_cp = compiler.CompiledProgram(main_prog).with_data_parallel(
use_cuda=use_gpu, loss_name=loss.name, exec_strategy=exe_strategy)
loss_name=loss.name,
main_program=main_prog,
exec_strategy=exe_strategy)
for _ in six.moves.xrange(iter_per_pe): for _ in six.moves.xrange(iter_per_pe):
pe.run([]) exe.run(train_cp)
class TestMNISTDryRun(TestBase): class TestMNISTDryRun(TestBase):

@ -16,6 +16,7 @@ from __future__ import print_function
import math import math
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid import compiler
import paddle.fluid.core as core import paddle.fluid.core as core
import unittest import unittest
import numpy as np import numpy as np
@ -114,7 +115,7 @@ class TestFetchAndFeed(unittest.TestCase):
reader = feeder.decorate_reader(get_data, multi_devices=True) reader = feeder.decorate_reader(get_data, multi_devices=True)
for batch_id, data in enumerate(reader()): for batch_id, data in enumerate(reader()):
loss_np = pe.run(feed=data, fetch_list=[loss.name])[0] loss_np = exe.run(train_cp, feed=data, fetch_list=[loss.name])[0]
print(batch_id, loss_np) print(batch_id, loss_np)
if batch_id == 2: if batch_id == 2:
break break

@ -16,6 +16,7 @@ from __future__ import print_function
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.core as core import paddle.fluid.core as core
from paddle.fluid import compiler
import numpy as np import numpy as np
import unittest import unittest
import os import os
@ -61,22 +62,21 @@ class TestPassBuilder(unittest.TestCase):
exe.run(startup) exe.run(startup)
feed_dict = {'image': image, 'label': label} feed_dict = {'image': image, 'label': label}
train_exe = fluid.ParallelExecutor( train_cp = compiler.CompiledProgram(main).with_data_parallel(
use_cuda=use_cuda, loss_name=loss.name, build_strategy=build_strategy)
test_cp = compiler.CompiledProgram(test_program).with_data_parallel(
loss_name=loss.name, loss_name=loss.name,
main_program=main, build_strategy=build_strategy,
build_strategy=build_strategy) share_vars_from=train_cp)
test_exe = fluid.ParallelExecutor(
use_cuda=use_cuda,
main_program=test_program,
share_vars_from=train_exe,
build_strategy=build_strategy)
for i in range(5): for i in range(5):
test_loss, = test_exe.run([loss.name], feed=feed_dict) _ = exe.run(train_cp, fetch_list=[loss.name], feed=feed_dict)
test_loss, = exe.run(test_cp,
train_loss, = train_exe.run([loss.name], feed=feed_dict) fetch_list=[loss.name],
feed=feed_dict)
train_loss = exe.run(train_cp,
fetch_list=[loss.name],
feed=feed_dict)
avg_test_loss_val = np.array(test_loss).mean() avg_test_loss_val = np.array(test_loss).mean()
if math.isnan(float(avg_test_loss_val)): if math.isnan(float(avg_test_loss_val)):

@ -14,6 +14,7 @@
import os import os
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid import compiler
import paddle import paddle
import unittest import unittest
import six import six
@ -140,9 +141,10 @@ def test_main(use_cuda, use_py_func_op, use_parallel_executor):
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
train_cp = compiler.CompiledProgram(fluid.default_main_program())
if use_parallel_executor: if use_parallel_executor:
exe = fluid.ParallelExecutor( train_cp = train_cp.with_data_parallel(loss_name=loss.name)
use_cuda=use_cuda, loss_name=loss.name)
fetch_list = [loss.name] fetch_list = [loss.name]
else: else:
fetch_list = [loss] fetch_list = [loss]
@ -150,9 +152,10 @@ def test_main(use_cuda, use_py_func_op, use_parallel_executor):
ret = [] ret = []
for epoch_id in six.moves.range(2): for epoch_id in six.moves.range(2):
for d in r(): for d in r():
L, = exe.run(feed=feeder.feed(d), fetch_list=fetch_list) L, = exe.run(train_cp,
feed=feeder.feed(d),
fetch_list=fetch_list)
ret.append(L) ret.append(L)
return np.array(ret) return np.array(ret)

@ -16,6 +16,7 @@ from __future__ import print_function
import unittest import unittest
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid import compiler
import paddle.fluid.core as core import paddle.fluid.core as core
import numpy as np import numpy as np
import threading import threading
@ -188,18 +189,18 @@ class TestPyReaderUsingExecutor(unittest.TestCase):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
startup_exe = fluid.Executor(place) exe = fluid.Executor(place)
startup_exe.run(startup_program) exe.run(startup_program)
train_cp = compiler.CompiledProgram(main_program)
if use_parallel_executor: if use_parallel_executor:
main_exe = fluid.ParallelExecutor(use_cuda, loss_name=loss.name) train_cp = train_cp.with_data_parallel(loss_name=loss.name)
if use_cuda: if use_cuda:
self.batch_size_times = core.get_cuda_device_count() self.batch_size_times = core.get_cuda_device_count()
else: else:
self.batch_size_times = int( self.batch_size_times = int(
os.environ.get('CPU_NUM', multiprocessing.cpu_count())) os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
else: else:
main_exe = startup_exe
self.batch_size_times = 1 self.batch_size_times = 1
reader = self.tensor_reader(use_decorate_paddle_reader) reader = self.tensor_reader(use_decorate_paddle_reader)
@ -214,7 +215,8 @@ class TestPyReaderUsingExecutor(unittest.TestCase):
self.outputs = [] self.outputs = []
for _ in range(self.iterations): for _ in range(self.iterations):
fetches = main_exe.run(fetch_list=[in_data.name, label.name]) fetches = exe.run(train_cp,
fetch_list=[in_data.name, label.name])
fetches = [as_numpy(fetch) for fetch in fetches] fetches = [as_numpy(fetch) for fetch in fetches]
self.outputs.append(fetches) self.outputs.append(fetches)

@ -15,6 +15,7 @@
from __future__ import print_function from __future__ import print_function
import os import os
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid import compiler
import paddle import paddle
import numpy as np import numpy as np
import unittest import unittest
@ -74,20 +75,13 @@ class TestReaderReset(unittest.TestCase):
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(startup_prog) exe.run(startup_prog)
build_strategy = fluid.BuildStrategy() train_cp = compiler.CompiledProgram(main_prog).with_data_parallel()
exec_strategy = fluid.ExecutionStrategy()
parallel_exe = fluid.ParallelExecutor(
use_cuda=self.use_cuda,
main_program=main_prog,
build_strategy=build_strategy,
exec_strategy=exec_strategy)
data_appeared = [False] * self.total_ins_num
pass_count = 0 pass_count = 0
while (True): while (True):
try: try:
data_val, label_val = parallel_exe.run(fetch_list, data_val, label_val = exe.run(train_cp,
return_numpy=True) fetch_list=fetch_list,
return_numpy=True)
ins_num = data_val.shape[0] ins_num = data_val.shape[0]
broadcasted_label = np.ones((ins_num, ) + tuple( broadcasted_label = np.ones((ins_num, ) + tuple(
self.ins_shape)) * label_val.reshape((ins_num, 1)) self.ins_shape)) * label_val.reshape((ins_num, 1))

@ -22,6 +22,7 @@ import paddle
import paddle.fluid.core as core import paddle.fluid.core as core
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid import compiler
def get_places(): def get_places():
@ -111,17 +112,17 @@ class TestWeightDecay(unittest.TestCase):
if use_reduce else fluid.BuildStrategy.ReduceStrategy.AllReduce if use_reduce else fluid.BuildStrategy.ReduceStrategy.AllReduce
build_strategy.memory_optimize = use_ir_memory_optimize build_strategy.memory_optimize = use_ir_memory_optimize
parallel_exe = fluid.ParallelExecutor( train_cp = compiler.CompiledProgram(fluid.default_main_program(
use_cuda, )).with_data_parallel(
loss_name=loss.name, loss_name=loss.name,
exec_strategy=exec_strategy, exec_strategy=exec_strategy,
build_strategy=build_strategy) build_strategy=build_strategy)
loss_set = [] loss_set = []
for data in self.train_data: for data in self.train_data:
out = parallel_exe.run(feed=feeder.feed(data), out = exe.run(train_cp,
fetch_list=[loss.name]) feed=feeder.feed(data),
print("loss %s" % (np.average(out))) fetch_list=[loss.name])
loss_set.append(np.average(out)) loss_set.append(np.average(out))
return loss_set return loss_set

Loading…
Cancel
Save