dataset_generator.py is a framework for generating data with python the generated data with a fixed format will be feeded into c++ reader test=developrevert-16555-model_data_cryption_link_all_lib
parent
be757096da
commit
c28bbdf8ba
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,109 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from paddle.fluid.proto import data_feed_pb2
|
||||||
|
from google.protobuf import text_format
|
||||||
|
from . import core
|
||||||
|
__all__ = ['DatasetFactory']
|
||||||
|
|
||||||
|
|
||||||
|
class DatasetFactory(object):
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def create_dataset(self, datafeed_class):
|
||||||
|
datafeed_class = datafeed_class.capitalize()
|
||||||
|
try:
|
||||||
|
dataset = globals()[datafeed_class]()
|
||||||
|
except:
|
||||||
|
raise ValueError("datafeed class %s does not exist" %
|
||||||
|
datafeed_class)
|
||||||
|
|
||||||
|
|
||||||
|
class DatasetBase(object):
|
||||||
|
def __init__(self):
|
||||||
|
# define class name here
|
||||||
|
# to decide whether we need create in memory instance
|
||||||
|
self.proto_desc = data_feed_pb2.DataFeedDesc()
|
||||||
|
self.proto_desc.pipe_command = "cat"
|
||||||
|
|
||||||
|
def set_pipe_command(self, pipe_command):
|
||||||
|
"""
|
||||||
|
Set pipe command of current dataset
|
||||||
|
A pipe command is a UNIX pipeline command that can be used only
|
||||||
|
|
||||||
|
"""
|
||||||
|
self.proto_desc.pipe_command = pipe_command
|
||||||
|
|
||||||
|
def set_batch_size(self, batch_size):
|
||||||
|
"""
|
||||||
|
Set batch size. Will be effective during training
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> data_feed = fluid.DataFeedDesc('data.proto')
|
||||||
|
>>> data_feed.set_batch_size(128)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
batch_size: batch size
|
||||||
|
|
||||||
|
"""
|
||||||
|
self.proto_desc.batch_size = batch_size
|
||||||
|
|
||||||
|
def set_use_var(self, var_list):
|
||||||
|
multi_slot = self.proto_desc.multi_slot_desc()
|
||||||
|
for var in var_list:
|
||||||
|
slot_var = multi_slot.add()
|
||||||
|
slot_var.is_used = True
|
||||||
|
slot_var.name = var.name
|
||||||
|
if var.lod_level == 0:
|
||||||
|
slot_var.is_dense = True
|
||||||
|
if var.dtype == core.VarType.FP32:
|
||||||
|
slot_var.type = "float32"
|
||||||
|
elif var.dtype == core.VarType.INT64:
|
||||||
|
slot_var.type = "uint64"
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
"Currently, fluid.dataset only supports dtype=float32 and dtype=int64"
|
||||||
|
)
|
||||||
|
|
||||||
|
def desc(self):
|
||||||
|
"""
|
||||||
|
Returns a protobuf message for this DataFeedDesc
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> data_feed = fluid.DataFeedDesc('data.proto')
|
||||||
|
>>> print(data_feed.desc())
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A string message
|
||||||
|
"""
|
||||||
|
return text_format.MessageToString(self.proto_desc)
|
||||||
|
|
||||||
|
|
||||||
|
class InMemoryDataset(DatasetBase):
|
||||||
|
def __init__(self):
|
||||||
|
super(InMemoryDataset.__init__())
|
||||||
|
self.proto_desc.name = "InMemoryDataFeed"
|
||||||
|
|
||||||
|
def local_shuffle(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def global_shuffle(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class QueueDataset(DatasetBase):
|
||||||
|
def __init__(self):
|
||||||
|
super(QueueDataset.__init__())
|
||||||
|
self.proto_desc.name = "MultiSlotDataFeed"
|
Loading…
Reference in new issue