|
|
|
@ -806,7 +806,7 @@ def crf_decoding(input, param_attr, label=None):
|
|
|
|
|
label(${label_type}): ${label_comment}
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
${viterbi_path_comment}
|
|
|
|
|
Variable: ${viterbi_path_comment}
|
|
|
|
|
"""
|
|
|
|
|
helper = LayerHelper('crf_decoding', **locals())
|
|
|
|
|
transition = helper.get_parameter(param_attr.name)
|
|
|
|
@ -828,7 +828,7 @@ def cos_sim(X, Y):
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
X (Variable): ${x_comment}
|
|
|
|
|
Y (Variable): ${x_comment}
|
|
|
|
|
Y (Variable): ${y_comment}
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Variable: the output of cosine(X, Y).
|
|
|
|
@ -1036,9 +1036,9 @@ def chunk_eval(input,
|
|
|
|
|
excluded_chunk_types (list): ${excluded_chunk_types_comment}
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
tuple: tuple containing: (precision, recall, f1_score,
|
|
|
|
|
num_infer_chunks, num_label_chunks,
|
|
|
|
|
num_correct_chunks)
|
|
|
|
|
tuple: tuple containing: precision, recall, f1_score,
|
|
|
|
|
num_infer_chunks, num_label_chunks,
|
|
|
|
|
num_correct_chunks
|
|
|
|
|
"""
|
|
|
|
|
helper = LayerHelper("chunk_eval", **locals())
|
|
|
|
|
|
|
|
|
@ -3050,8 +3050,6 @@ def nce(input,
|
|
|
|
|
|
|
|
|
|
def transpose(x, perm, name=None):
|
|
|
|
|
"""
|
|
|
|
|
**transpose Layer**
|
|
|
|
|
|
|
|
|
|
Permute the dimensions of `input` according to `perm`.
|
|
|
|
|
|
|
|
|
|
The `i`-th dimension of the returned tensor will correspond to the
|
|
|
|
@ -3918,7 +3916,7 @@ def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
|
|
|
|
|
spatial_scale (float): ${spatial_scale_comment} Default: 1.0
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
roi_pool (Variable): ${out_comment}.
|
|
|
|
|
Variable: ${out_comment}.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
.. code-block:: python
|
|
|
|
|