Merge remote-tracking branch 'baidu/develop' into update_getstarted_doc

shanyi15-patch-2
qijun 7 years ago
commit c58ce0a687

@ -1,11 +1,11 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
@ -138,13 +138,14 @@ def main():
avg_cost = fluid.layers.mean(x=cost)
# Evaluator
accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
batch_size = fluid.layers.create_tensor(dtype='int64')
batch_acc = fluid.layers.accuracy(
input=predict, label=label, total=batch_size)
# inference program
inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program):
test_target = accuracy.metrics + accuracy.states
inference_program = fluid.io.get_inference_program(test_target)
inference_program = fluid.io.get_inference_program(batch_acc)
# Optimization
optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
@ -157,27 +158,30 @@ def main():
# test
def test(exe):
accuracy.reset(exe)
test_pass_acc = fluid.average.WeightedAverage()
for batch_id, data in enumerate(test_reader()):
img_data = np.array(map(lambda x: x[0].reshape(data_shape),
data)).astype("float32")
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([-1, 1])
exe.run(inference_program,
feed={"pixel": img_data,
"label": y_data})
outs = exe.run(inference_program,
feed={"pixel": img_data,
"label": y_data},
fetch_list=[batch_acc, batch_size])
test_pass_acc.add(value=np.array(outs[0]), weight=np.array(outs[1]))
return accuracy.eval(exe)
return test_pass_acc.eval()
def train_loop(exe, trainer_prog):
iters = 0
ts = time.time()
train_pass_acc = fluid.average.WeightedAverage()
for pass_id in range(args.num_passes):
# train
start_time = time.time()
num_samples = 0
accuracy.reset(exe)
train_pass_acc.reset()
with profiler.profiler("CPU", 'total') as prof:
for batch_id, data in enumerate(train_reader()):
ts = time.time()
@ -187,13 +191,14 @@ def main():
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
y_data = y_data.reshape([-1, 1])
loss, acc = exe.run(
loss, acc, b_size = exe.run(
trainer_prog,
feed={"pixel": img_data,
"label": y_data},
fetch_list=[avg_cost] + accuracy.metrics)
fetch_list=[avg_cost, batch_acc, batch_size])
iters += 1
num_samples += len(data)
train_pass_acc.add(value=acc, weight=b_size)
print(
"Pass = %d, Iters = %d, Loss = %f, Accuracy = %f, Speed = %.2f img/s"
% (pass_id, iters, loss, acc,
@ -201,7 +206,7 @@ def main():
) # The accuracy is the accumulation of batches, but not the current batch.
pass_elapsed = time.time() - start_time
pass_train_acc = accuracy.eval(exe)
pass_train_acc = train_pass_acc.eval()
pass_test_acc = test(exe)
print(
"Pass = %d, Training performance = %f imgs/s, Train accuracy = %f, Test accuracy = %f\n"

@ -39,6 +39,7 @@ ExternalProject_Add(
-DCMAKE_INSTALL_LIBDIR=${SNAPPY_INSTALL_DIR}/lib
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DBUILD_TESTING=OFF
-DSNAPPY_BUILD_TESTS:BOOL=OFF
-DCMAKE_BUILD_TYPE=${THIRD_PARTY_BUILD_TYPE}
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${SNAPPY_INSTALL_DIR}

@ -5,14 +5,14 @@ cc_library(ddim SRCS ddim.cc DEPS eigen3 boost)
cc_test(ddim_test SRCS ddim_test.cc DEPS ddim)
nv_test(dim_test SRCS dim_test.cu DEPS ddim)
if (WITH_GPU)
if(WITH_GPU)
nv_library(tensor SRCS tensor.cc tensor_util.cu DEPS ddim place paddle_memory device_context framework_proto)
else()
cc_library(tensor SRCS tensor.cc tensor_util.cc DEPS ddim place paddle_memory device_context framework_proto)
endif ()
endif()
cc_test(tensor_test SRCS tensor_test.cc DEPS tensor)
if (WITH_GPU)
if(WITH_GPU)
nv_test(tensor_util_test SRCS tensor_util_test.cc tensor_util_test.cu DEPS tensor)
else()
cc_test(tensor_util_test SRCS tensor_util_test.cc DEPS tensor)
@ -39,8 +39,13 @@ cc_library(data_device_transform SRCS data_device_transform.cc DEPS tensor)
nv_test(data_device_transform_test SRCS data_device_transform_test.cu
DEPS operator op_registry init math_function)
cc_library(data_type_transform SRCS data_type_transform.cc DEPS tensor)
cc_test(data_type_transform_test SRCS data_type_transform_test.cc DEPS data_type_transform)
if(WITH_GPU)
nv_library(data_type_transform SRCS data_type_transform.cu DEPS tensor)
nv_test(data_type_transform_test SRCS data_type_transform_test.cc data_type_transform_test.cu DEPS data_type_transform)
else()
cc_library(data_type_transform SRCS data_type_transform.cc DEPS tensor)
cc_test(data_type_transform_test SRCS data_type_transform_test.cc DEPS data_type_transform)
endif()
cc_library(data_layout_transform SRCS data_layout_transform.cc DEPS tensor math_function)
cc_test(data_layout_transform_test SRCS data_layout_transform_test.cc DEPS data_layout_transform)

@ -28,24 +28,19 @@ class Channel {
virtual bool Send(T*) = 0;
virtual bool Receive(T*) = 0;
virtual size_t Cap() = 0;
virtual void Lock() = 0;
virtual void Unlock() = 0;
virtual void Close() = 0;
virtual ~Channel() {}
};
// Forward declaration of channel implementations.
namespace details {
template <typename T>
class Buffered;
template <typename T>
class UnBuffered;
} // namespace details
class ChannelImpl;
template <typename T>
Channel<T>* MakeChannel(size_t buffer_size) {
if (buffer_size > 0) {
return new details::Buffered<T>(buffer_size);
}
return new details::UnBuffered<T>();
return new ChannelImpl<T>(buffer_size);
}
template <typename T>
@ -89,6 +84,19 @@ class ChannelHolder {
if (IsInitialized()) holder_->Close();
}
size_t Cap() {
if (IsInitialized()) return holder_->Cap();
return -1;
}
void Lock() {
if (IsInitialized()) holder_->Lock();
}
void Unlock() {
if (IsInitialized()) holder_->Unlock();
}
inline bool IsInitialized() const { return holder_ != nullptr; }
inline const std::type_index Type() {
@ -106,6 +114,9 @@ class ChannelHolder {
virtual const std::type_index Type() const = 0;
virtual void* Ptr() const = 0;
virtual void Close() = 0;
virtual void Lock() = 0;
virtual void Unlock() = 0;
virtual size_t Cap() = 0;
};
template <typename T>
@ -115,11 +126,28 @@ class ChannelHolder {
}
virtual const std::type_index Type() const { return type_; }
virtual void* Ptr() const { return static_cast<void*>(channel_.get()); }
virtual void Close() {
if (channel_) channel_->Close();
}
virtual size_t Cap() {
if (channel_)
return channel_->Cap();
else
return -1;
}
virtual void Lock() {
if (channel_) channel_->Lock();
}
virtual void Unlock() {
if (channel_) channel_->Unlock();
}
std::unique_ptr<Channel<T>> channel_;
const std::type_index type_;
};
@ -131,5 +159,4 @@ class ChannelHolder {
} // namespace framework
} // namespace paddle
#include "paddle/fluid/framework/details/buffered_channel.h"
#include "paddle/fluid/framework/details/unbuffered_channel.h"
#include "paddle/fluid/framework/channel_impl.h"

@ -0,0 +1,229 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <stddef.h> // for size_t
#include <atomic>
#include <condition_variable>
#include <deque>
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace framework {
template <typename T>
class ChannelImpl : public paddle::framework::Channel<T> {
friend Channel<T> *paddle::framework::MakeChannel<T>(size_t);
friend void paddle::framework::CloseChannel<T>(Channel<T> *);
public:
virtual bool Send(T *);
virtual bool Receive(T *);
virtual size_t Cap() { return cap_; }
virtual void Lock();
virtual void Unlock();
virtual void Close();
ChannelImpl(size_t);
virtual ~ChannelImpl();
private:
struct QueueMessage {
T *data;
std::condition_variable_any cond;
bool chan_closed = false;
bool completed = false;
QueueMessage(T *item) : data(item) {}
void Wait(std::unique_lock<std::recursive_mutex> &lock) {
cond.wait(lock, [this]() { return completed; });
}
void Notify() {
completed = true;
cond.notify_all();
}
};
bool send_return(bool value) {
send_ctr--;
destructor_cond_.notify_all();
return value;
}
bool recv_return(bool value) {
recv_ctr--;
destructor_cond_.notify_all();
return value;
}
size_t cap_;
std::recursive_mutex mu_;
bool closed_;
std::deque<T> buf_;
std::deque<std::shared_ptr<QueueMessage>> recvq;
std::deque<std::shared_ptr<QueueMessage>> sendq;
std::atomic<unsigned> send_ctr{0};
std::atomic<unsigned> recv_ctr{0};
std::condition_variable_any destructor_cond_;
};
template <typename T>
ChannelImpl<T>::ChannelImpl(size_t capacity)
: cap_(capacity), closed_(false), send_ctr(0), recv_ctr(0) {
PADDLE_ENFORCE_GE(capacity, 0);
}
template <typename T>
bool ChannelImpl<T>::Send(T *item) {
send_ctr++;
std::unique_lock<std::recursive_mutex> lock{mu_};
// If channel is closed, do nothing
if (closed_) {
lock.unlock();
// TODO(abhinavarora) Should panic on closed channel
return send_return(false);
}
// If there is a receiver, directly pass the value we want
// to send to the receiver, bypassing the channel buffer if any
if (!recvq.empty()) {
std::shared_ptr<QueueMessage> m = recvq.front();
recvq.pop_front();
// Do the data transfer
*(m->data) = std::move(*item);
// Wake up the blocked process and unlock
m->Notify();
lock.unlock();
return send_return(true);
}
// Unbuffered channel will always bypass this
// If buffered channel has space in buffer,
// write the element to the buffer.
if (buf_.size() < cap_) {
// Copy to buffer
buf_.push_back(std::move(*item));
// Release lock and return true
lock.unlock();
return send_return(true);
}
// Block on channel, because some receiver will complete
// the operation for us
auto m = std::make_shared<QueueMessage>(item);
sendq.push_back(m);
m->Wait(lock);
// TODO(abhinavarora) Should panic on closed channel
return send_return(!m->chan_closed);
}
template <typename T>
bool ChannelImpl<T>::Receive(T *item) {
recv_ctr++;
std::unique_lock<std::recursive_mutex> lock{mu_};
// If channel is closed and buffer is empty or
// channel is unbuffered
if (closed_ && buf_.empty()) {
lock.unlock();
return recv_return(false);
}
// If there is a sender, directly receive the value we want
// from the sender, bypassing the channel buffer if any
if (!sendq.empty()) {
std::shared_ptr<QueueMessage> m = sendq.front();
sendq.pop_front();
// Do the data transfer
*item = std::move(*(m->data));
// Wake up the blocked process and unlock
m->Notify();
lock.unlock();
return recv_return(true);
}
// If this is a buffered channel and there are items in buffer
if (buf_.size() > 0) {
// Directly read from buffer
*item = std::move(buf_.front());
buf_.pop_front();
// Release lock and return true
lock.unlock();
return recv_return(true);
}
// No sender available, block on this channel
// Some receiver will complete the option for us
auto m = std::make_shared<QueueMessage>(item);
recvq.push_back(m);
m->Wait(lock);
return recv_return(!m->chan_closed);
}
template <typename T>
void ChannelImpl<T>::Lock() {
mu_.lock();
}
template <typename T>
void ChannelImpl<T>::Unlock() {
mu_.unlock();
}
template <typename T>
void ChannelImpl<T>::Close() {
std::unique_lock<std::recursive_mutex> lock{mu_};
if (closed_) {
// TODO(abhinavarora): closing an already closed channel should panic
lock.unlock();
return;
}
closed_ = true;
// Empty the readers
while (!recvq.empty()) {
std::shared_ptr<QueueMessage> m = recvq.front();
recvq.pop_front();
m->chan_closed = true;
m->Notify();
}
// Empty the senders
while (!sendq.empty()) {
std::shared_ptr<QueueMessage> m = sendq.front();
sendq.pop_front();
m->chan_closed = true;
m->Notify();
}
}
template <typename T>
ChannelImpl<T>::~ChannelImpl() {
Close();
// The destructor must wait for all readers and writers to complete their task
// The channel has been closed, so we will not accept new readers and writers
std::unique_lock<std::recursive_mutex> lock{mu_};
destructor_cond_.wait(lock,
[this]() { return send_ctr == 0 && recv_ctr == 0; });
}
} // namespace framework
} // namespace paddle

File diff suppressed because it is too large Load Diff

@ -42,6 +42,7 @@ void DataTransform(const OpKernelType& expected_kernel_type,
PassTensorData(&out, &in);
}
// do data type transform
if (expected_kernel_type.data_type_ != kernel_type_for_var.data_type_) {
TransDataType(kernel_type_for_var, expected_kernel_type, in, &out);
transformed = true;

@ -16,13 +16,16 @@ limitations under the License. */
#include <typeindex>
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
namespace paddle {
namespace framework {
inline proto::VarType::Type ToDataType(std::type_index type) {
using namespace paddle::framework::proto;
if (typeid(float).hash_code() == type.hash_code()) {
if (typeid(platform::float16).hash_code() == type.hash_code()) {
return proto::VarType::FP16;
} else if (typeid(float).hash_code() == type.hash_code()) {
return proto::VarType::FP32;
} else if (typeid(double).hash_code() == type.hash_code()) {
return proto::VarType::FP64;
@ -40,6 +43,8 @@ inline proto::VarType::Type ToDataType(std::type_index type) {
inline std::type_index ToTypeIndex(proto::VarType::Type type) {
using namespace paddle::framework::proto;
switch (type) {
case proto::VarType::FP16:
return typeid(platform::float16);
case proto::VarType::FP32:
return typeid(float);
case proto::VarType::FP64:
@ -59,6 +64,9 @@ template <typename Visitor>
inline void VisitDataType(proto::VarType::Type type, Visitor visitor) {
using namespace paddle::framework::proto;
switch (type) {
case proto::VarType::FP16:
visitor.template operator()<platform::float16>();
break;
case proto::VarType::FP32:
visitor.template operator()<float>();
break;

@ -47,9 +47,15 @@ struct CastDataType {
auto* context = static_cast<const platform::CPUDeviceContext*>(ctx_);
trans(*context, in_begin, in_end, out_begin,
CastDataTypeFunctor<InType, OutType>());
#ifdef __NVCC__
} else if (platform::is_gpu_place(in_.place())) {
platform::Transform<platform::CUDADeviceContext> trans;
auto* context = static_cast<const platform::CUDADeviceContext*>(ctx_);
trans(*context, in_begin, in_end, out_begin,
CastDataTypeFunctor<InType, OutType>());
#endif
} else {
// TODO(dzhwinter): enhance Copy CPU<->GPU with different data type?
PADDLE_THROW("Unsupport CPU <-> GPU!");
PADDLE_THROW("Unsupported place!");
}
}
};
@ -65,6 +71,10 @@ void TransDataType(const OpKernelType& kernel_type_for_var,
auto ctx = pool.Get(in.place());
switch (src_type) {
case proto::VarType::FP16:
framework::VisitDataType(dst_type,
CastDataType<platform::float16>(in, out, ctx));
break;
case proto::VarType::FP32:
framework::VisitDataType(dst_type, CastDataType<float>(in, out, ctx));
break;

@ -22,32 +22,145 @@ TEST(DataTypeTransform, CPUTransform) {
auto place = CPUPlace();
Tensor in;
Tensor out;
float* ptr = in.mutable_data<float>(make_ddim({2, 3}), place);
int data_number = 2 * 3;
for (int i = 0; i < data_number; ++i) {
ptr[i] = i / 3;
}
auto kernel_fp16 = OpKernelType(proto::VarType::FP16, place,
DataLayout::kAnyLayout, LibraryType::kPlain);
auto kernel_fp32 = OpKernelType(proto::VarType::FP32, place,
DataLayout::kAnyLayout, LibraryType::kPlain);
auto kernel_fp64 = OpKernelType(proto::VarType::FP64, place,
DataLayout::kAnyLayout, LibraryType::kPlain);
auto kernel_int32 = OpKernelType(proto::VarType::INT32, place,
DataLayout::kAnyLayout, LibraryType::kPlain);
auto kernel_int64 = OpKernelType(proto::VarType::INT64, place,
DataLayout::kAnyLayout, LibraryType::kPlain);
auto kernel_bool = OpKernelType(proto::VarType::BOOL, place,
DataLayout::kAnyLayout, LibraryType::kPlain);
TransDataType(kernel_fp32, kernel_fp64, in, &out);
double* out_data_double = out.data<double>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_double[i], static_cast<double>(i / 3));
// data type transform from float32
{
Tensor in;
Tensor out;
float* ptr = in.mutable_data<float>(make_ddim({2, 3}), place);
int data_number = 2 * 3;
for (int i = 0; i < data_number; ++i) {
ptr[i] = i / 3;
}
TransDataType(kernel_fp32, kernel_fp64, in, &out);
double* out_data_double = out.data<double>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_double[i], static_cast<double>(i / 3));
}
TransDataType(kernel_fp32, kernel_int32, in, &out);
int* out_data_int = out.data<int>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_int[i], static_cast<int>(i / 3));
}
}
TransDataType(kernel_fp32, kernel_int32, in, &out);
int* out_data_int = out.data<int>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_int[i], static_cast<int>(i / 3));
// data type transform from/to float16
{
Tensor in;
Tensor out;
float16* ptr = in.mutable_data<float16>(make_ddim({2, 3}), place);
int data_number = 2 * 3;
for (int i = 0; i < data_number; ++i) {
ptr[i] = i;
}
// transform from float16 to other data types
TransDataType(kernel_fp16, kernel_fp32, in, &out);
float* out_data_float = out.data<float>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_float[i], static_cast<float>(ptr[i]));
}
TransDataType(kernel_fp16, kernel_fp64, in, &out);
double* out_data_double = out.data<double>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_double[i], static_cast<double>(ptr[i]));
}
TransDataType(kernel_fp16, kernel_int32, in, &out);
int* out_data_int = out.data<int>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_int[i], static_cast<int>(ptr[i]));
}
TransDataType(kernel_fp16, kernel_int64, in, &out);
int64_t* out_data_int64 = out.data<int64_t>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_int64[i], static_cast<int64_t>(ptr[i]));
}
TransDataType(kernel_fp16, kernel_bool, in, &out);
bool* out_data_bool = out.data<bool>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_bool[i], static_cast<bool>(ptr[i]));
}
// transform float to float16
float* in_data_float = in.mutable_data<float>(make_ddim({2, 3}), place);
for (int i = 0; i < data_number; ++i) {
in_data_float[i] = i;
}
TransDataType(kernel_fp32, kernel_fp16, in, &out);
ptr = out.data<float16>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(ptr[i].x, static_cast<float16>(in_data_float[i]).x);
}
// transform double to float16
double* in_data_double = in.mutable_data<double>(make_ddim({2, 3}), place);
for (int i = 0; i < data_number; ++i) {
in_data_double[i] = i;
}
TransDataType(kernel_fp64, kernel_fp16, in, &out);
ptr = out.data<float16>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(ptr[i].x, static_cast<float16>(in_data_double[i]).x);
}
// transform int to float16
int* in_data_int = in.mutable_data<int>(make_ddim({2, 3}), place);
for (int i = 0; i < data_number; ++i) {
in_data_int[i] = i;
}
TransDataType(kernel_int32, kernel_fp16, in, &out);
ptr = out.data<float16>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(ptr[i].x, static_cast<float16>(in_data_int[i]).x);
}
// transform int64 to float16
int64_t* in_data_int64 = in.mutable_data<int64_t>(make_ddim({2, 3}), place);
for (int i = 0; i < data_number; ++i) {
in_data_int64[i] = i;
}
TransDataType(kernel_int64, kernel_fp16, in, &out);
ptr = out.data<float16>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(ptr[i].x, static_cast<float16>(in_data_int64[i]).x);
}
// transform bool to float16
bool* in_data_bool = in.mutable_data<bool>(make_ddim({2, 3}), place);
for (int i = 0; i < data_number; ++i) {
in_data_bool[i] = i;
}
TransDataType(kernel_bool, kernel_fp16, in, &out);
ptr = out.data<float16>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(ptr[i].x, static_cast<float16>(in_data_bool[i]).x);
}
}
}

@ -0,0 +1,215 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/data_type_transform.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "gtest/gtest.h"
TEST(DataTypeTransform, GPUTransform) {
using namespace paddle::framework;
using namespace paddle::platform;
auto cpu_place = CPUPlace();
auto gpu_place = CUDAPlace(0);
CUDADeviceContext context(gpu_place);
auto kernel_fp16 = OpKernelType(proto::VarType::FP16, gpu_place,
DataLayout::kAnyLayout, LibraryType::kPlain);
auto kernel_fp32 = OpKernelType(proto::VarType::FP32, gpu_place,
DataLayout::kAnyLayout, LibraryType::kPlain);
auto kernel_fp64 = OpKernelType(proto::VarType::FP64, gpu_place,
DataLayout::kAnyLayout, LibraryType::kPlain);
auto kernel_int32 = OpKernelType(proto::VarType::INT32, gpu_place,
DataLayout::kAnyLayout, LibraryType::kPlain);
auto kernel_int64 = OpKernelType(proto::VarType::INT64, gpu_place,
DataLayout::kAnyLayout, LibraryType::kPlain);
auto kernel_bool = OpKernelType(proto::VarType::BOOL, gpu_place,
DataLayout::kAnyLayout, LibraryType::kPlain);
// data type transform from float32
{
Tensor in;
Tensor in_gpu;
Tensor out_gpu;
Tensor out;
float* in_ptr = in.mutable_data<float>(make_ddim({2, 3}), cpu_place);
float arr[6] = {0, 1, 2, 3, 4, 5};
int data_number = sizeof(arr) / sizeof(arr[0]);
memcpy(in_ptr, arr, sizeof(arr));
TensorCopy(in, gpu_place, context, &in_gpu);
TransDataType(kernel_fp32, kernel_fp64, in_gpu, &out_gpu);
TensorCopy(out_gpu, cpu_place, context, &out);
context.Wait();
double* out_data_double = out.data<double>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_double[i], static_cast<double>(arr[i]));
}
TransDataType(kernel_fp32, kernel_int32, in_gpu, &out_gpu);
TensorCopy(out_gpu, cpu_place, context, &out);
context.Wait();
int* out_data_int = out.data<int>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_int[i], static_cast<int>(arr[i]));
}
}
// data type transform from/to float16
{
Tensor in;
Tensor in_gpu;
Tensor out_gpu;
Tensor out;
float16* ptr = in.mutable_data<float16>(make_ddim({2, 3}), cpu_place);
float16 arr[6] = {float16(0), float16(1), float16(2),
float16(3), float16(4), float16(5)};
int data_number = sizeof(arr) / sizeof(arr[0]);
memcpy(ptr, arr, sizeof(arr));
TensorCopy(in, gpu_place, context, &in_gpu);
// transform from float16 to other data types
TransDataType(kernel_fp16, kernel_fp32, in_gpu, &out_gpu);
TensorCopy(out_gpu, cpu_place, context, &out);
context.Wait();
float* out_data_float = out.data<float>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_float[i], static_cast<float>(ptr[i]));
}
TransDataType(kernel_fp16, kernel_fp64, in_gpu, &out_gpu);
TensorCopy(out_gpu, cpu_place, context, &out);
context.Wait();
double* out_data_double = out.data<double>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_double[i], static_cast<double>(ptr[i]));
}
TransDataType(kernel_fp16, kernel_int32, in_gpu, &out_gpu);
TensorCopy(out_gpu, cpu_place, context, &out);
context.Wait();
int* out_data_int = out.data<int>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_int[i], static_cast<int>(ptr[i]));
}
TransDataType(kernel_fp16, kernel_int64, in_gpu, &out_gpu);
TensorCopy(out_gpu, cpu_place, context, &out);
context.Wait();
int64_t* out_data_int64 = out.data<int64_t>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_int64[i], static_cast<int64_t>(ptr[i]));
}
TransDataType(kernel_fp16, kernel_bool, in_gpu, &out_gpu);
TensorCopy(out_gpu, cpu_place, context, &out);
context.Wait();
bool* out_data_bool = out.data<bool>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(out_data_bool[i], static_cast<bool>(ptr[i]));
}
// transform float to float16
float* in_data_float = in.mutable_data<float>(make_ddim({2, 3}), cpu_place);
for (int i = 0; i < data_number; ++i) {
in_data_float[i] = i;
}
TensorCopy(in, gpu_place, context, &in_gpu);
TransDataType(kernel_fp32, kernel_fp16, in_gpu, &out_gpu);
TensorCopy(out_gpu, cpu_place, context, &out);
context.Wait();
ptr = out.data<float16>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(ptr[i].x, static_cast<float16>(in_data_float[i]).x);
}
// transform double to float16
double* in_data_double =
in.mutable_data<double>(make_ddim({2, 3}), cpu_place);
for (int i = 0; i < data_number; ++i) {
in_data_double[i] = i;
}
TensorCopy(in, gpu_place, context, &in_gpu);
TransDataType(kernel_fp64, kernel_fp16, in_gpu, &out_gpu);
TensorCopy(out_gpu, cpu_place, context, &out);
context.Wait();
ptr = out.data<float16>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(ptr[i].x, static_cast<float16>(in_data_double[i]).x);
}
// transform int to float16
int* in_data_int = in.mutable_data<int>(make_ddim({2, 3}), cpu_place);
for (int i = 0; i < data_number; ++i) {
in_data_int[i] = i;
}
TensorCopy(in, gpu_place, context, &in_gpu);
TransDataType(kernel_int32, kernel_fp16, in_gpu, &out_gpu);
TensorCopy(out_gpu, cpu_place, context, &out);
context.Wait();
ptr = out.data<float16>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(ptr[i].x, static_cast<float16>(in_data_int[i]).x);
}
// transform int64 to float16
int64_t* in_data_int64 =
in.mutable_data<int64_t>(make_ddim({2, 3}), cpu_place);
for (int i = 0; i < data_number; ++i) {
in_data_int64[i] = i;
}
TensorCopy(in, gpu_place, context, &in_gpu);
TransDataType(kernel_int64, kernel_fp16, in_gpu, &out_gpu);
TensorCopy(out_gpu, cpu_place, context, &out);
context.Wait();
ptr = out.data<float16>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(ptr[i].x, static_cast<float16>(in_data_int64[i]).x);
}
// transform bool to float16
bool* in_data_bool = in.mutable_data<bool>(make_ddim({2, 3}), cpu_place);
for (int i = 0; i < data_number; ++i) {
in_data_bool[i] = i;
}
TensorCopy(in, gpu_place, context, &in_gpu);
TransDataType(kernel_bool, kernel_fp16, in_gpu, &out_gpu);
TensorCopy(out_gpu, cpu_place, context, &out);
context.Wait();
ptr = out.data<float16>();
for (int i = 0; i < data_number; ++i) {
ASSERT_EQ(ptr[i].x, static_cast<float16>(in_data_bool[i]).x);
}
}
}

@ -1,142 +0,0 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <atomic>
#include <condition_variable>
#include <deque>
#include <mutex>
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace framework {
namespace details {
// Four of the properties of Buffered Channel:
// - A send to a full channel blocks temporarily until a receive from the
// channel or the channel is closed.
// - A receive from an empty channel blocks temporarily until a send to the
// channel or the channel is closed.
// - A send to a closed channel returns false immediately.
// - A receive from a closed channel returns false immediately.
template <typename T>
class Buffered : public paddle::framework::Channel<T> {
friend Channel<T>* paddle::framework::MakeChannel<T>(size_t);
friend void paddle::framework::CloseChannel<T>(Channel<T>*);
public:
virtual bool Send(T*);
virtual bool Receive(T*);
virtual size_t Cap() { return cap_; }
virtual void Close();
virtual ~Buffered();
private:
size_t cap_;
std::mutex mu_;
std::condition_variable empty_cond_var_;
std::condition_variable full_cond_var_;
std::condition_variable destructor_cond_var_;
std::deque<T> channel_;
std::atomic<bool> closed_{false};
std::atomic<unsigned> send_ctr{0};
std::atomic<unsigned> recv_ctr{0};
Buffered(size_t cap) : cap_(cap), closed_(false) {
PADDLE_ENFORCE_GT(cap, 0);
}
void NotifyAllParticipants(std::unique_lock<std::mutex>*);
};
template <typename T>
bool Buffered<T>::Send(T* item) {
bool ret = false;
if (closed_) {
return ret;
}
send_ctr++;
std::unique_lock<std::mutex> lock(mu_);
full_cond_var_.wait(lock,
[this]() { return channel_.size() < cap_ || closed_; });
if (!closed_) {
channel_.push_back(std::move(*item));
lock.unlock();
empty_cond_var_.notify_one();
ret = true;
}
send_ctr--;
destructor_cond_var_.notify_one();
return ret;
}
template <typename T>
bool Buffered<T>::Receive(T* item) {
bool ret = false;
// Once the channel has been closed and all data has been consumed,
// just return false. Don't even try acquiring the mutex.
if (closed_ && channel_.empty()) {
return false;
}
recv_ctr++;
std::unique_lock<std::mutex> lock(mu_);
empty_cond_var_.wait(lock, [this]() { return !channel_.empty() || closed_; });
if (!channel_.empty()) {
*item = std::move(channel_.front());
channel_.pop_front();
full_cond_var_.notify_one();
ret = true;
}
recv_ctr--;
destructor_cond_var_.notify_one();
return ret;
}
template <typename T>
void Buffered<T>::Close() {
if (closed_) {
return;
}
std::unique_lock<std::mutex> lock(mu_);
closed_ = true;
NotifyAllParticipants(&lock);
}
template <typename T>
Buffered<T>::~Buffered() {
std::unique_lock<std::mutex> lock(mu_);
closed_ = true;
channel_.clear();
NotifyAllParticipants(&lock);
// The destructor must wait for all readers and writers to complete their task
// The channel has been closed, so we will not accept new readers and writers
lock.lock();
destructor_cond_var_.wait(
lock, [this]() { return send_ctr == 0 && recv_ctr == 0; });
}
template <typename T>
void Buffered<T>::NotifyAllParticipants(std::unique_lock<std::mutex>* lock) {
lock->unlock();
full_cond_var_.notify_all();
empty_cond_var_.notify_all();
}
} // namespace details
} // namespace framework
} // namespace paddle

@ -1,174 +0,0 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <atomic>
#include <condition_variable>
#include <mutex>
#include "paddle/fluid/framework/channel.h"
namespace paddle {
namespace framework {
namespace details {
// Four of the properties of UnBuffered Channel:
// - A send to a channel blocks temporarily until a receive from the
// channel or the channel is closed.
// - A receive from a channel blocks temporarily until a send to the
// channel or the channel is closed.
// - A send to a closed channel returns false immediately.
// - A receive from a closed channel returns false immediately.
template <typename T>
class UnBuffered : public paddle::framework::Channel<T> {
friend Channel<T>* paddle::framework::MakeChannel<T>(size_t);
friend void paddle::framework::CloseChannel<T>(Channel<T>*);
public:
virtual bool Send(T*);
virtual bool Receive(T*);
virtual size_t Cap() { return 0; }
virtual void Close();
virtual ~UnBuffered();
private:
std::mutex mu_ch_;
// Mutex for readers and writers who are waiting for other reader
// and writer to complete execution
std::recursive_mutex mu_read_, mu_write_;
// reader_found_ is set true when a reader is ready to accept data
// writer_found_ is set true when a writer is ready to send data
// A transaction occurs only when both are true
std::atomic<bool> reader_found_{false}, writer_found_{false};
std::condition_variable cv_channel_;
std::condition_variable_any cv_reader_, cv_writer_, cv_destructor_;
T* item{nullptr};
std::atomic<bool> closed_{false};
std::atomic<unsigned> send_ctr{0};
std::atomic<unsigned> recv_ctr{0};
UnBuffered() : closed_(false) {}
void NotifyAllParticipants(std::unique_lock<std::mutex>*);
};
// This function implements the concept of how data should
// be sent from a writer to a reader.
template <typename T>
bool UnBuffered<T>::Send(T* data) {
bool ret = false;
if (closed_) {
return ret;
}
send_ctr++;
// Prevent other writers from entering
std::unique_lock<std::recursive_mutex> writer_lock(mu_write_);
writer_found_ = true;
std::unique_lock<std::recursive_mutex> cv_lock(mu_write_);
// If writer comes first, it should wait till a reader arrives
cv_writer_.wait(cv_lock,
[this]() { return reader_found_ == true || closed_; });
cv_reader_.notify_one();
if (!closed_) {
std::unique_lock<std::mutex> channel_lock(mu_ch_);
item = data;
channel_lock.unlock();
cv_channel_.notify_one();
channel_lock.lock();
cv_channel_.wait(channel_lock,
[this]() { return item == nullptr || closed_; });
ret = true;
}
writer_found_ = false;
send_ctr--;
cv_destructor_.notify_one();
return ret;
}
// This function implements the concept of how
// data that was sent by a writer is read from a reader.
template <typename T>
bool UnBuffered<T>::Receive(T* data) {
bool ret = false;
// If channel is closed, we don't even want any reader to enter.
// Unlike a buffered channel, an unbuffered channel does not allow
// readers to read after closing because there is no buffer to be consumed.
if (closed_) return ret;
recv_ctr++;
// Prevent other readers from entering
std::unique_lock<std::recursive_mutex> read_lock{mu_read_};
reader_found_ = true;
std::unique_lock<std::recursive_mutex> cv_lock{mu_read_};
// If reader comes first, it should wait till a writer arrives
cv_reader_.wait(cv_lock,
[this]() { return writer_found_ == true || closed_; });
cv_writer_.notify_one();
if (!closed_) {
std::unique_lock<std::mutex> lock_ch{mu_ch_};
// Reader should wait for the writer to first write its data
cv_channel_.wait(lock_ch, [this]() { return item != nullptr || closed_; });
if (!closed_) {
*data = std::move(*item);
item = nullptr;
lock_ch.unlock();
ret = true;
}
cv_channel_.notify_one();
}
reader_found_ = false;
recv_ctr--;
cv_destructor_.notify_one();
return ret;
}
// This function implements the sequence of events
// that take place once the channel is closed.
template <typename T>
void UnBuffered<T>::Close() {
if (closed_) {
return;
}
std::unique_lock<std::mutex> lock(mu_ch_);
item = nullptr;
closed_ = true;
NotifyAllParticipants(&lock);
}
// This function implements the sequence of events
// that are executed once the object of an UnBuffered
// channel is destroyed.
template <typename T>
UnBuffered<T>::~UnBuffered() {
std::unique_lock<std::mutex> lock(mu_ch_);
item = nullptr;
closed_ = true;
NotifyAllParticipants(&lock);
lock.lock();
cv_destructor_.wait(lock,
[this]() { return send_ctr == 0 && recv_ctr == 0; });
}
// This function notifies all the readers, writers and
// the channel condition variables.
template <typename T>
void UnBuffered<T>::NotifyAllParticipants(std::unique_lock<std::mutex>* lock) {
lock->unlock();
cv_writer_.notify_all();
cv_channel_.notify_all();
cv_reader_.notify_all();
}
} // namespace details
} // namespace framework
} // namespace paddle

@ -25,92 +25,5 @@ DDim ReaderBase::shape(size_t idx) const {
return shapes_[idx];
}
void ShuffleReader::ReadNext(std::vector<LoDTensor>* out) {
if (iteration_pos_ >= buffer_.size()) {
// Reload buffer with new data
buffer_.clear();
buffer_.reserve(buffer_size_);
for (int i = 0; i < buffer_size_; ++i) {
if (reader_->HasNext()) {
buffer_.push_back(std::vector<LoDTensor>());
reader_->ReadNext(&buffer_.back());
} else {
break;
}
}
// TODO(fengjiayi): 'std::random_shuffle' can be very slow. It needs to be
// optimize.
std::random_shuffle(buffer_.begin(), buffer_.end());
iteration_pos_ = 0;
}
out->clear();
if (!buffer_.empty()) {
std::swap(*out, buffer_[iteration_pos_++]);
}
// if buffer_ is empty, the 'out' will return as an empty vector.
}
void BatchReader::ReadNext(std::vector<LoDTensor>* out) {
buffer_.clear();
buffer_.reserve(batch_size_);
for (int i = 0; i < batch_size_; ++i) {
if (reader_->HasNext()) {
buffer_.push_back(std::vector<LoDTensor>());
reader_->ReadNext(&buffer_.back());
} else {
break;
}
}
// Concat instances
out->clear();
if (buffer_.empty()) {
// if buffer_ is empty, the 'out' will return as an empty vector.
return;
}
int out_num = buffer_[0].size();
out->reserve(out_num);
for (int j = 0; j < out_num; ++j) {
// Merge shape and check date type
std::type_index batch_type = buffer_[0][j].type();
DDim batch_shape = buffer_[0][j].dims();
for (size_t i = 1; i < buffer_.size(); ++i) {
std::type_index ins_type = buffer_[i][j].type();
DDim ins_shape = buffer_[i][j].dims();
PADDLE_ENFORCE_EQ(batch_type, ins_type);
PADDLE_ENFORCE_EQ(slice_ddim(batch_shape, 1, batch_shape.size()),
slice_ddim(ins_shape, 1, ins_shape.size()));
PADDLE_ENFORCE_GT(ins_shape[0], 0);
batch_shape[0] += ins_shape[0];
}
LoDTensor out_tensor;
out_tensor.Resize(batch_shape);
out_tensor.mutable_data(platform::CPUPlace(), batch_type);
int64_t dst_offset = 0;
// Merge lod and data
LoD batch_lod;
for (size_t i = 0; i < buffer_.size(); ++i) {
DDim ins_shape = buffer_[i][j].dims();
LoD ins_lod = buffer_[i][j].lod();
if (i == 0) {
batch_lod = ins_lod;
} else {
PADDLE_ENFORCE_EQ(batch_lod.size(), ins_lod.size());
for (size_t level_idx = 0; level_idx < batch_lod.size(); ++level_idx) {
auto& lod_level = batch_lod[level_idx];
for (size_t k = 1; k < ins_lod[level_idx].size(); ++k) {
lod_level.push_back(ins_lod[level_idx][k] + lod_level.back());
}
}
}
Tensor dst = out_tensor.Slice(dst_offset, dst_offset + ins_shape[0]);
TensorCopy(buffer_[i][j], platform::CPUPlace(), &dst);
dst_offset += ins_shape[0];
}
out_tensor.set_lod(batch_lod);
out->push_back(out_tensor);
}
}
} // namespace framework
} // namespace paddle

@ -60,83 +60,8 @@ class DecoratedReader : public ReaderBase {
ReaderBase* reader_;
};
// file readers
template <typename T>
class RandomDataGenerator : public FileReader {
public:
RandomDataGenerator(const std::vector<DDim>& shapes, float min, float max)
: FileReader(shapes), min_(min), max_(max) {
PADDLE_ENFORCE_LE(
min, max, "'min' shouldn't be greater than 'max'.(%f vs %f)", min, max);
unsigned int seed = std::random_device()();
engine_.seed(seed);
dist_ = std::uniform_real_distribution<float>(min_, max_);
}
void ReadNext(std::vector<LoDTensor>* out) override {
out->clear();
out->reserve(shapes_.size());
for (const DDim& shape : shapes_) {
PADDLE_ENFORCE_GE(
shape.size(), 2,
"The rank of reader's output data should be 2 at least.(Now it's %d)",
shape.size());
LoDTensor out_tensor;
out_tensor.Resize(shape);
T* data = out_tensor.mutable_data<T>(platform::CPUPlace());
int64_t numel = product(shape);
for (int64_t i = 0; i < numel; ++i) {
data[i] = dist_(engine_);
}
out->push_back(out_tensor);
}
}
bool HasNext() const override { return true; }
void ReInit() override { return; }
private:
float min_;
float max_;
std::minstd_rand engine_;
std::uniform_real_distribution<float> dist_;
};
// decorated readers
class ShuffleReader : public DecoratedReader {
public:
ShuffleReader(ReaderBase* reader, int buffer_size)
: DecoratedReader(reader), buffer_size_(buffer_size), iteration_pos_(0) {
buffer_.reserve(buffer_size);
}
void ReadNext(std::vector<LoDTensor>* out) override;
private:
int buffer_size_;
std::vector<std::vector<LoDTensor>> buffer_;
size_t iteration_pos_;
};
class BatchReader : public DecoratedReader {
public:
BatchReader(ReaderBase* reader, int batch_size)
: DecoratedReader(reader), batch_size_(batch_size) {
buffer_.reserve(batch_size_);
}
void ReadNext(std::vector<LoDTensor>* out) override;
private:
int batch_size_;
std::vector<std::vector<LoDTensor>> buffer_;
};
// The ReaderHolder is used as readers' unified wrapper,
// making it easier to access different type readers in Variables.
// The ReaderHolder is used as reader' unified wrapper,
// making it easier to access different type reader in Variables.
class ReaderHolder {
public:
void Reset(ReaderBase* reader) { reader_.reset(reader); }

@ -235,27 +235,53 @@ TEST(TensorToVector, Tensor) {
TEST(TensorContainsNAN, CPU) {
using namespace paddle::framework;
using namespace paddle::platform;
Tensor src;
float* buf = src.mutable_data<float>({3}, CPUPlace());
buf[0] = 0.0;
buf[1] = NAN;
buf[2] = 0.0;
ASSERT_TRUE(TensorContainsNAN(src));
buf[1] = 0.0;
ASSERT_FALSE(TensorContainsNAN(src));
{
Tensor src;
float* buf = src.mutable_data<float>({3}, CPUPlace());
buf[0] = 0.0;
buf[1] = NAN;
buf[2] = 0.0;
ASSERT_TRUE(TensorContainsNAN(src));
buf[1] = 0.0;
ASSERT_FALSE(TensorContainsNAN(src));
}
{
Tensor src;
float16* buf = src.mutable_data<float16>({3}, CPUPlace());
buf[0] = 0.0;
buf[1].x = 0x7fff;
buf[2] = 0.0;
ASSERT_TRUE(TensorContainsNAN(src));
buf[1] = 0.0;
ASSERT_FALSE(TensorContainsNAN(src));
}
}
TEST(TensorContainsInf, CPU) {
using namespace paddle::framework;
using namespace paddle::platform;
Tensor src;
double* buf = src.mutable_data<double>({3}, CPUPlace());
buf[0] = 1.0;
buf[1] = INFINITY;
buf[2] = 0.0;
ASSERT_TRUE(TensorContainsInf(src));
buf[1] = 1.0;
ASSERT_FALSE(TensorContainsInf(src));
{
Tensor src;
double* buf = src.mutable_data<double>({3}, CPUPlace());
buf[0] = 1.0;
buf[1] = INFINITY;
buf[2] = 0.0;
ASSERT_TRUE(TensorContainsInf(src));
buf[1] = 1.0;
ASSERT_FALSE(TensorContainsInf(src));
}
{
Tensor src;
float16* buf = src.mutable_data<float16>({3}, CPUPlace());
buf[0] = 1.0;
buf[1].x = 0x7c00;
buf[2] = 0.0;
ASSERT_TRUE(TensorContainsInf(src));
buf[1] = 1.0;
ASSERT_FALSE(TensorContainsInf(src));
}
}
TEST(Tensor, FromAndToStream) {

@ -25,32 +25,65 @@ static __global__ void FillNAN(float* buf) {
buf[1] = 0.1;
buf[2] = NAN;
}
static __global__ void FillInf(float* buf) {
buf[0] = 0.0;
buf[1] = INFINITY;
buf[2] = 0.5;
}
static __global__ void FillNAN(platform::float16* buf) {
buf[0] = 0.0;
buf[1] = 0.1;
buf[2].x = 0x7fff;
}
static __global__ void FillInf(platform::float16* buf) {
buf[0] = 0.0;
buf[1].x = 0x7c00;
buf[2] = 0.5;
}
TEST(TensorContainsNAN, GPU) {
Tensor tensor;
platform::CUDAPlace gpu(0);
auto& pool = platform::DeviceContextPool::Instance();
using namespace paddle::platform;
CUDAPlace gpu(0);
auto& pool = DeviceContextPool::Instance();
auto* cuda_ctx = pool.GetByPlace(gpu);
float* buf = tensor.mutable_data<float>({3}, gpu);
FillNAN<<<1, 1, 0, cuda_ctx->stream()>>>(buf);
cuda_ctx->Wait();
ASSERT_TRUE(TensorContainsNAN(tensor));
{
Tensor tensor;
float* buf = tensor.mutable_data<float>({3}, gpu);
FillNAN<<<1, 1, 0, cuda_ctx->stream()>>>(buf);
cuda_ctx->Wait();
ASSERT_TRUE(TensorContainsNAN(tensor));
}
{
Tensor tensor;
float16* buf = tensor.mutable_data<float16>({3}, gpu);
FillNAN<<<1, 1, 0, cuda_ctx->stream()>>>(buf);
cuda_ctx->Wait();
ASSERT_TRUE(TensorContainsNAN(tensor));
}
}
TEST(TensorContainsInf, GPU) {
Tensor tensor;
platform::CUDAPlace gpu(0);
auto& pool = platform::DeviceContextPool::Instance();
using namespace paddle::platform;
CUDAPlace gpu(0);
auto& pool = DeviceContextPool::Instance();
auto* cuda_ctx = pool.GetByPlace(gpu);
float* buf = tensor.mutable_data<float>({3}, gpu);
FillInf<<<1, 1, 0, cuda_ctx->stream()>>>(buf);
cuda_ctx->Wait();
ASSERT_TRUE(TensorContainsInf(tensor));
{
Tensor tensor;
float* buf = tensor.mutable_data<float>({3}, gpu);
FillInf<<<1, 1, 0, cuda_ctx->stream()>>>(buf);
cuda_ctx->Wait();
ASSERT_TRUE(TensorContainsInf(tensor));
}
{
Tensor tensor;
float16* buf = tensor.mutable_data<float16>({3}, gpu);
FillInf<<<1, 1, 0, cuda_ctx->stream()>>>(buf);
cuda_ctx->Wait();
ASSERT_TRUE(TensorContainsInf(tensor));
}
}
} // namespace framework

@ -1,5 +1,7 @@
file(GLOB GENERAL_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*_op.cc")
string(REPLACE "_mkldnn" "" GENERAL_OPS "${GENERAL_OPS}")
string(REPLACE ".cc" "" GENERAL_OPS "${GENERAL_OPS}")
list(REMOVE_DUPLICATES GENERAL_OPS)
set(DEPS_OPS "")
set(pybind_file ${PADDLE_SOURCE_DIR}/paddle/fluid/pybind/pybind.h)
file(WRITE ${pybind_file} "// Generated by the paddle/operator/CMakeLists.txt. DO NOT EDIT!\n\n")
@ -13,6 +15,8 @@ function(op_library TARGET)
set(cu_cc_srcs)
set(cudnn_cu_cc_srcs)
set(CUDNN_FILE)
set(mkldnn_cc_srcs)
set(MKLDNN_FILE)
set(op_common_deps operator op_registry math_function)
set(options "")
set(oneValueArgs "")
@ -36,12 +40,20 @@ function(op_library TARGET)
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${CUDNN_FILE}.cu.cc)
list(APPEND cudnn_cu_cc_srcs ${CUDNN_FILE}.cu.cc)
endif()
if(WITH_MKLDNN)
string(REPLACE "_op" "_mkldnn_op" MKLDNN_FILE "${TARGET}")
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${MKLDNN_FILE}.cc)
list(APPEND mkldnn_cc_srcs ${MKLDNN_FILE}.cc)
endif()
endif()
else()
foreach(src ${op_library_SRCS})
if (${src} MATCHES ".*\\.cu$")
list(APPEND cu_srcs ${src})
elseif(${src} MATCHES ".*_cudnn_op.cu.cc$")
list(APPEND cudnn_cu_cc_srcs ${src})
elseif(WITH_MKLDNN AND ${src} MATCHES ".*_mkldnn_op.cc$")
list(APPEND mkldnn_cc_srcs ${src})
elseif(${src} MATCHES ".*\\.cu.cc$")
list(APPEND cu_cc_srcs ${src})
elseif(${src} MATCHES ".*\\.cc$")
@ -62,15 +74,15 @@ function(op_library TARGET)
set(DEPS_OPS ${TARGET} ${DEPS_OPS} PARENT_SCOPE)
endif()
if (WITH_GPU)
nv_library(${TARGET} SRCS ${cc_srcs} ${cu_cc_srcs} ${cudnn_cu_cc_srcs} ${cu_srcs} DEPS ${op_library_DEPS}
nv_library(${TARGET} SRCS ${cc_srcs} ${cu_cc_srcs} ${cudnn_cu_cc_srcs} ${mkldnn_cc_srcs} ${cu_srcs} DEPS ${op_library_DEPS}
${op_common_deps})
else()
cc_library(${TARGET} SRCS ${cc_srcs} DEPS ${op_library_DEPS}
${op_common_deps})
cc_library(${TARGET} SRCS ${cc_srcs} ${mkldnn_cc_srcs} DEPS ${op_library_DEPS}
${op_common_deps})
endif()
# Define operators that don't need pybind here.
foreach(manual_pybind_op "net_op" "compare_op" "logical_op" "nccl_op" "tensor_array_read_write_op" "create_reader_op")
foreach(manual_pybind_op "net_op" "compare_op" "logical_op" "nccl_op" "tensor_array_read_write_op")
if ("${TARGET}" STREQUAL "${manual_pybind_op}")
set(pybind_flag 1)
endif()
@ -101,7 +113,8 @@ function(op_library TARGET)
# pybind USE_CPU_ONLY_OP
list(LENGTH cu_srcs cu_srcs_len)
list(LENGTH cu_cc_srcs cu_cc_srcs_len)
if (${pybind_flag} EQUAL 0 AND ${cu_srcs_len} EQUAL 0 AND ${cu_cc_srcs_len} EQUAL 0)
list(LENGTH mkldnn_cc_srcs mkldnn_cc_srcs_len)
if (${pybind_flag} EQUAL 0 AND ${mkldnn_cc_srcs_len} EQUAL 0 AND ${cu_srcs_len} EQUAL 0 AND ${cu_cc_srcs_len} EQUAL 0)
file(APPEND ${pybind_file} "USE_CPU_ONLY_OP(${TARGET});\n")
set(pybind_flag 1)
endif()
@ -112,6 +125,11 @@ function(op_library TARGET)
file(APPEND ${pybind_file} "USE_OP_DEVICE_KERNEL(${TARGET}, CUDNN);\n")
endif()
# pybind USE_OP_DEVICE_KERNEL for MKLDNN
if (WITH_MKLDNN AND ${mkldnn_cc_srcs_len} GREATER 0)
file(APPEND ${pybind_file} "USE_OP_DEVICE_KERNEL(${TARGET}, MKLDNN);\n")
endif()
# pybind USE_OP
if (${pybind_flag} EQUAL 0)
file(APPEND ${pybind_file} "USE_OP(${TARGET});\n")
@ -128,8 +146,8 @@ else()
set(DEPS_OPS ${DEPS_OPS} nccl_op)
endif()
add_subdirectory(detail)
if(WITH_DISTRIBUTE)
add_subdirectory(detail)
set(DISTRIBUTE_DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf)
set(DISTRIBUTE_COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor")
op_library(send_op DEPS ${DISTRIBUTE_DEPS})
@ -170,7 +188,6 @@ op_library(recurrent_op DEPS executor)
op_library(warpctc_op DEPS dynload_warpctc sequence_padding sequence_scale)
op_library(cos_sim_op DEPS cos_sim_functor)
op_library(parallel_do_op DEPS executor)
op_library(create_reader_op DEPS reader)
if (WITH_GPU)
op_library(conv_op DEPS vol2col depthwise_conv)
@ -184,12 +201,18 @@ op_library(save_op DEPS lod_tensor)
op_library(load_op DEPS lod_tensor)
op_library(save_combine_op DEPS lod_tensor)
op_library(load_combine_op DEPS lod_tensor)
op_library(concat_op DEPS concat_functor)
list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS})
foreach(src ${GENERAL_OPS})
op_library(${src})
endforeach()
file(APPEND ${pybind_file} "USE_OP(less_than);\nUSE_OP(logical_and);\nUSE_NO_KERNEL_OP(read_from_array);\nUSE_NO_KERNEL_OP(create_random_data_generator);\n")
file(APPEND ${pybind_file} "USE_OP(less_than);\nUSE_OP(logical_and);\nUSE_NO_KERNEL_OP(read_from_array);\n")
add_subdirectory(reader)
foreach(src ${READER_LIBRARY})
set(OP_LIBRARY ${src} ${OP_LIBRARY})
endforeach()
set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library")

@ -100,7 +100,8 @@ class ConcatOpGrad : public framework::OperatorWithKernel {
namespace ops = paddle::operators;
REGISTER_OP_EX(concat, ops::ConcatOp, ops::ConcatOpMaker, concat_grad,
ops::ConcatOpGrad, false)
REGISTER_OP_CPU_KERNEL(concat,
ops::ConcatKernel<paddle::platform::CPUPlace, float>)
REGISTER_OP_CPU_KERNEL(concat_grad,
ops::ConcatGradKernel<paddle::platform::CPUPlace, float>)
REGISTER_OP_CPU_KERNEL(
concat, ops::ConcatKernel<paddle::platform::CPUDeviceContext, float>)
REGISTER_OP_CPU_KERNEL(
concat_grad,
ops::ConcatGradKernel<paddle::platform::CPUDeviceContext, float>)

@ -17,6 +17,7 @@ limitations under the License. */
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/concat.h"
#include "paddle/fluid/operators/strided_memcpy.h"
namespace paddle {
@ -27,54 +28,30 @@ class ConcatKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto ins = ctx.MultiInput<framework::Tensor>("X");
auto* out = ctx.Output<framework::Tensor>("Out");
framework::Tensor* out = ctx.Output<framework::Tensor>("Out");
int64_t axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
auto place = ctx.GetPlace();
out->mutable_data<T>(place);
auto out_stride = framework::stride_numel(out->dims());
size_t output_offset = 0;
// If axis >=1, copy to out immediately need to call many times
// of cuda memcpy. Copy the input to cpu and do the stride copy,
// then copy to gpu output.
if (platform::is_gpu_place(place) && axis >= 1) {
platform::CPUPlace copy_place;
auto& cpu_ctx = *platform::DeviceContextPool::Instance().Get(copy_place);
framework::Tensor cpu_out;
cpu_out.Resize(out->dims());
cpu_out.mutable_data<T>(copy_place);
auto& dev_ctx = ctx.device_context();
std::vector<std::unique_ptr<framework::Tensor>> cpu_ins;
for (auto* in : ins) {
std::unique_ptr<framework::Tensor> cpu_in(new framework::Tensor);
framework::TensorCopy(*in, copy_place, dev_ctx, cpu_in.get());
cpu_ins.emplace_back(std::move(cpu_in));
}
// TODO(dzhwinter): overlap copy and compute stream
// https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/
dev_ctx.Wait();
for (auto& in : cpu_ins) {
auto& cpu_in = *in.get();
auto in_stride = framework::stride_numel(cpu_in.dims());
StridedNumelCopyWithAxis<T>(
cpu_ctx, axis, cpu_out.data<T>() + output_offset, out_stride,
cpu_in.data<T>(), in_stride, in_stride[axis]);
output_offset += in_stride[axis];
}
framework::TensorCopy(cpu_out, place, dev_ctx, out);
} else {
// Sometimes direct copies will be faster, this maybe need deeply analysis.
if (axis == 0 && ins.size() < 10) {
size_t output_offset = 0;
for (auto* in : ins) {
auto in_stride = framework::stride_numel(in->dims());
auto out_stride = framework::stride_numel(out->dims());
StridedNumelCopyWithAxis<T>(ctx.device_context(), axis,
out->data<T>() + output_offset, out_stride,
in->data<T>(), in_stride, in_stride[axis]);
output_offset += in_stride[axis];
}
} else {
std::vector<framework::Tensor> inputs(ins.size());
for (size_t j = 0; j < ins.size(); ++j) {
inputs[j] = *ins[j];
}
auto& dev_ctx = ctx.template device_context<DeviceContext>();
paddle::operators::math::ConcatFunctor<DeviceContext, T> concat_functor;
concat_functor(dev_ctx, inputs, static_cast<int>(axis), out);
}
}
};
@ -86,16 +63,31 @@ class ConcatGradKernel : public framework::OpKernel<T> {
auto* in = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto outs = ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X"));
int64_t axis = static_cast<int64_t>(ctx.Attr<int>("axis"));
size_t input_offset = 0;
auto in_stride = framework::stride_numel(in->dims());
for (auto& out : outs) {
out->mutable_data<T>(ctx.GetPlace());
auto out_stride = framework::stride_numel(out->dims());
StridedNumelCopyWithAxis<T>(ctx.device_context(), axis, out->data<T>(),
out_stride, in->data<T>() + input_offset,
in_stride, out_stride[axis]);
input_offset += out_stride[axis];
// Sometimes direct copies will be faster, this maybe need deeply analysis.
if (axis == 0 && outs.size() < 10) {
size_t input_offset = 0;
auto in_stride = framework::stride_numel(in->dims());
for (auto& out : outs) {
out->mutable_data<T>(ctx.GetPlace());
auto out_stride = framework::stride_numel(out->dims());
StridedNumelCopyWithAxis<T>(ctx.device_context(), axis, out->data<T>(),
out_stride, in->data<T>() + input_offset,
in_stride, out_stride[axis]);
input_offset += out_stride[axis];
}
} else {
std::vector<framework::Tensor> outputs(outs.size());
for (size_t j = 0; j < outs.size(); ++j) {
outs[j]->mutable_data<T>(ctx.GetPlace());
outputs[j] = *outs[j];
}
auto& dev_ctx = ctx.template device_context<DeviceContext>();
paddle::operators::math::ConcatGradFunctor<DeviceContext, T>
concat_grad_functor;
concat_grad_functor(dev_ctx, *in, static_cast<int>(axis), outputs);
}
}
};

File diff suppressed because it is too large Load Diff

@ -13,6 +13,12 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/conv_op.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
namespace paddle {
namespace operators {
@ -64,22 +70,21 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
framework::OpKernelType ConvOp::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
bool use_cudnn = ctx.Attr<bool>("use_cudnn");
use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
framework::LibraryType library_{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_CUDA
if (platform::is_gpu_place(ctx.GetPlace())) {
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
if (platform::CanCUDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kCUDNN;
}
#endif
framework::LibraryType library_;
if (use_cudnn) {
library_ = framework::LibraryType::kCUDNN;
} else {
library_ = framework::LibraryType::kPlain;
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kMKLDNN;
}
#endif
std::string data_format = ctx.Attr<std::string>("data_format");
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
@ -131,6 +136,9 @@ Conv2DOpMaker::Conv2DOpMaker(OpProto* proto, OpAttrChecker* op_checker)
"use_cudnn",
"(bool, default false) Only used in cudnn kernel, need install cudnn")
.SetDefault(false);
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<std::string>(
"data_format",
"(string, default NCHW) Only used in "
@ -224,6 +232,9 @@ Conv3DOpMaker::Conv3DOpMaker(OpProto* proto, OpAttrChecker* op_checker)
"use_cudnn",
"(bool, default false) Only used in cudnn kernel, need install cudnn")
.SetDefault(false);
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<std::string>(
"data_format",
"(string, default NCHW) Only used in "
@ -284,23 +295,21 @@ void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
bool use_cudnn = ctx.Attr<bool>("use_cudnn");
use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
framework::LibraryType library_{framework::LibraryType::kPlain};
#ifdef PADDLE_WITH_CUDA
if (platform::is_gpu_place(ctx.GetPlace())) {
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
if (platform::CanCUDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kCUDNN;
}
#endif
framework::LibraryType library_;
if (use_cudnn) {
library_ = framework::LibraryType::kCUDNN;
} else {
library_ = framework::LibraryType::kPlain;
#ifdef PADDLE_WITH_MKLDNN
if (library_ == framework::LibraryType::kPlain &&
platform::CanMKLDNNBeUsed(ctx)) {
library_ = framework::LibraryType::kMKLDNN;
}
#endif
std::string data_format = ctx.Attr<std::string>("data_format");
// TODO(pzelazko-intel): enable MKLDNN layout when it's ready
framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
return framework::OpKernelType(
framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),

@ -1,246 +0,0 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
namespace paddle {
namespace operators {
static std::vector<framework::DDim> RestoreShapes(
const std::vector<int>& shape_concat, const std::vector<int>& ranks) {
std::vector<framework::DDim> res;
int offset = 0;
for (int len : ranks) {
auto start_it = shape_concat.begin() + offset;
auto end_it = start_it + len;
res.push_back(framework::make_ddim(std::vector<int>(start_it, end_it)));
offset += len;
}
return res;
}
// general infershape for file readers
class CreateFileReaderInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"The output file reader should not be null.");
const auto shape_concat =
ctx->Attrs().Get<std::vector<int>>("shape_concat");
const auto ranks = ctx->Attrs().Get<std::vector<int>>("ranks");
std::vector<framework::DDim> shapes = RestoreShapes(shape_concat, ranks);
ctx->SetReaderDims("Out", shapes);
if (ctx->IsRuntime()) {
const auto lod_levels = ctx->Attrs().Get<std::vector<int>>("lod_levels");
PADDLE_ENFORCE_EQ(
lod_levels.size(), shapes.size(),
"The number of 'lod_levels'(%d) doesn't match the number "
"of 'shapes'(%d).",
lod_levels.size(), shapes.size());
framework::VarDesc* reader =
boost::get<framework::VarDesc*>(ctx->GetOutputVarPtrs("Out")[0]);
reader->SetLoDLevels(lod_levels);
}
}
};
// general infershape for decorated readers
class CreateDecoratedReaderInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("UnderlyingReader"),
"Input(UnderlyingReader) should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"The output decorated reader should not be null.");
ctx->SetReaderDims("Out", ctx->GetReaderDims("UnderlyingReader"));
if (ctx->IsRuntime()) {
framework::VarDesc* in_reader = boost::get<framework::VarDesc*>(
ctx->GetInputVarPtrs("UnderlyingReader")[0]);
framework::VarDesc* out_reader =
boost::get<framework::VarDesc*>(ctx->GetOutputVarPtrs("Out")[0]);
out_reader->SetLoDLevels(in_reader->GetLoDLevels());
}
}
};
// general var type inference for file readers
class CreateFileReaderInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
std::string reader_name = op_desc.Output("Out")[0];
framework::VarDesc* reader = block->FindVarRecursive(reader_name);
reader->SetType(framework::proto::VarType::READER);
}
};
// general var type inference for decorated readers
class CreateDecoratedReaderInferVarType : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc& op_desc,
framework::BlockDesc* block) const override {
std::string in_reader_name = op_desc.Input("UnderlyingReader")[0];
framework::VarDesc* in_reader = block->FindVarRecursive(in_reader_name);
std::string out_reader_name = op_desc.Output("Out")[0];
framework::VarDesc* out_reader = block->FindVarRecursive(out_reader_name);
out_reader->SetType(framework::proto::VarType::READER);
out_reader->SetDataTypes(in_reader->GetDataTypes());
}
};
template <typename T>
class CreateRandomDataGeneratorOp : public framework::OperatorBase {
public:
using framework::OperatorBase::OperatorBase;
private:
void RunImpl(const framework::Scope& scope,
const platform::Place& dev_place) const override {
const auto& shape_concat = Attr<std::vector<int>>("shape_concat");
const auto& ranks = Attr<std::vector<int>>("ranks");
PADDLE_ENFORCE(!shape_concat.empty() && !ranks.empty());
PADDLE_ENFORCE_EQ(std::accumulate(ranks.begin(), ranks.end(), 0),
int(shape_concat.size()),
"The accumulate of all ranks should be equal to the "
"shape concat's length.");
std::vector<framework::DDim> shapes = RestoreShapes(shape_concat, ranks);
auto* out = scope.FindVar(Output("Out"))
->template GetMutable<framework::ReaderHolder>();
out->Reset(new framework::RandomDataGenerator<T>(shapes, Attr<float>("min"),
Attr<float>("max")));
}
};
class CreateRandomDataGeneratorOpMaker
: public framework::OpProtoAndCheckerMaker {
public:
CreateRandomDataGeneratorOpMaker(OpProto* op_proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(op_proto, op_checker) {
AddOutput("Out", "(ReaderHolder) The created random reader.");
AddAttr<std::vector<int>>("shape_concat",
"The concat of all data's shapes.");
AddAttr<std::vector<int>>(
"ranks",
"The ranks of each data."
"e.g."
"shape_concat = [2,3,4,5,6]"
"ranks = [3,2]"
"It means the reader will generate two data each time,"
"whose shapes are [2,3,4] and [5,6] respectively.");
AddAttr<std::vector<int>>("lod_levels", "The LoD levels of each data.");
AddAttr<float>("min", "The lower bound of reader's uniform distribution.");
AddAttr<float>("max", "The upper bound of reader's uniform distribution.");
AddComment(R"DOC(
CreateRandomDataGenerator Operator
This Op creates a random reader.
The reader generates random data instead of really reading from files.
Generated data follow an uniform distribution between 'min' and 'max'.
)DOC");
}
};
class CreateShuffleReaderOp : public framework::OperatorBase {
public:
using framework::OperatorBase::OperatorBase;
private:
void RunImpl(const framework::Scope& scope,
const platform::Place& dev_place) const override {
const auto& underlying_reader = scope.FindVar(Input("UnderlyingReader"))
->Get<framework::ReaderHolder>();
auto* out = scope.FindVar(Output("Out"))
->template GetMutable<framework::ReaderHolder>();
out->Reset(new framework::ShuffleReader(underlying_reader.Get(),
Attr<int>("buffer_size")));
}
};
class CreateShuffleReaderOpMaker : public framework::OpProtoAndCheckerMaker {
public:
CreateShuffleReaderOpMaker(OpProto* op_proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(op_proto, op_checker) {
AddInput(
"UnderlyingReader",
"(ReaderHolder) The underlying reader for creating a shuffle reader.");
AddOutput("Out", "(ReaderHolder) The created shuffle reader.");
AddAttr<int>("buffer_size", "The shuffle buffer size.").GreaterThan(0);
AddComment(R"DOC(
CreateShuffleReader Operator
A shuffle reader takes another reader as its 'underlying reader'
and yields the underlying reader's outputs in a shuffled order.
)DOC");
}
};
class CreateBatchReaderOp : public framework::OperatorBase {
public:
using framework::OperatorBase::OperatorBase;
private:
void RunImpl(const framework::Scope& scope,
const platform::Place& dev_place) const override {
const auto& underlying_reader = scope.FindVar(Input("UnderlyingReader"))
->Get<framework::ReaderHolder>();
auto* out = scope.FindVar(Output("Out"))
->template GetMutable<framework::ReaderHolder>();
out->Reset(new framework::BatchReader(underlying_reader.Get(),
Attr<int>("batch_size")));
}
};
class CreateBatchReaderOpMaker : public framework::OpProtoAndCheckerMaker {
public:
CreateBatchReaderOpMaker(OpProto* op_proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(op_proto, op_checker) {
AddInput(
"UnderlyingReader",
"(ReaderHolder) The underlying reader for creating a batch reader.");
AddOutput("Out", "(ReaderHolder) The created batch reader.");
AddAttr<int>("batch_size",
"How many instances the batch reader yields each time.")
.GreaterThan(0);
AddComment(R"DOC(
CreateBatchReader Operator
A batch reader takes another reader as its 'underlying reader',
gathers the underlying reader's outputs and then yields them in batches.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(create_random_data_generator,
ops::CreateRandomDataGeneratorOp<float>,
ops::CreateFileReaderInferShape,
ops::CreateRandomDataGeneratorOpMaker,
paddle::framework::EmptyGradOpMaker,
ops::CreateFileReaderInferVarType);
REGISTER_OPERATOR(create_shuffle_reader, ops::CreateShuffleReaderOp,
ops::CreateDecoratedReaderInferShape,
ops::CreateShuffleReaderOpMaker,
paddle::framework::EmptyGradOpMaker,
ops::CreateDecoratedReaderInferVarType);
REGISTER_OPERATOR(create_batch_reader, ops::CreateBatchReaderOp,
ops::CreateDecoratedReaderInferShape,
ops::CreateBatchReaderOpMaker,
paddle::framework::EmptyGradOpMaker,
ops::CreateDecoratedReaderInferVarType);

@ -1 +1,3 @@
grpc_library(sendrecvop_grpc SRCS sendrecvop_utils.cc grpc_client.cc grpc_server.cc PROTO send_recv.proto DEPS lod_tensor selected_rows)
if(WITH_DISTRIBUTE)
grpc_library(sendrecvop_grpc SRCS sendrecvop_utils.cc grpc_client.cc grpc_server.cc PROTO send_recv.proto DEPS lod_tensor selected_rows)
endif()

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save