parent
0c4be7e6a6
commit
c5c8051657
@ -0,0 +1,43 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include <glog/logging.h>
|
||||||
|
|
||||||
|
#include "BufferArg.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
|
||||||
|
const SequenceArg& BufferArg::sequence() const {
|
||||||
|
// CHECK_EQ(bufferType_, TENSOR_SEQUENCE_DATA);
|
||||||
|
return dynamic_cast<const SequenceArg&>(*this);
|
||||||
|
}
|
||||||
|
|
||||||
|
const SparseMatrixArg& BufferArg::sparse() const {
|
||||||
|
// CHECK_EQ(bufferType_, TENSOR_SPARSE);
|
||||||
|
return dynamic_cast<const SparseMatrixArg&>(*this);
|
||||||
|
}
|
||||||
|
|
||||||
|
void BufferArgs::addArg(const Matrix& arg, const TensorShape& shape) {
|
||||||
|
args_.push_back(std::make_shared<BufferArg>(arg, shape));
|
||||||
|
}
|
||||||
|
|
||||||
|
void BufferArgs::addArg(const CpuSparseMatrix& arg) {
|
||||||
|
args_.push_back(std::make_shared<SparseMatrixArg>(arg));
|
||||||
|
}
|
||||||
|
|
||||||
|
void BufferArgs::addArg(const GpuSparseMatrix& arg) {
|
||||||
|
args_.push_back(std::make_shared<SparseMatrixArg>(arg));
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace paddle
|
||||||
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,128 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "BufferArg.h"
|
||||||
|
#include <gtest/gtest.h>
|
||||||
|
#include "paddle/math/MemoryHandle.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
|
||||||
|
TEST(BufferTest, BufferArg) {
|
||||||
|
TensorShape shape({8, 10});
|
||||||
|
CpuMemoryHandle memory(shape.getElements() *
|
||||||
|
sizeOfValuType(VALUE_TYPE_FLOAT));
|
||||||
|
BufferArg buffer(memory.getBuf(), VALUE_TYPE_FLOAT, shape);
|
||||||
|
EXPECT_EQ(buffer.data(), memory.getBuf());
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(BufferTest, SequenceIdArg) {
|
||||||
|
TensorShape shape({10});
|
||||||
|
CpuMemoryHandle memory(shape.getElements() *
|
||||||
|
sizeOfValuType(VALUE_TYPE_INT32));
|
||||||
|
SequenceIdArg buffer(memory.getBuf(), shape);
|
||||||
|
EXPECT_EQ(buffer.data(), memory.getBuf());
|
||||||
|
EXPECT_EQ(buffer.numSeqs(), 9);
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(BufferTest, asArgument) {
|
||||||
|
MatrixPtr matrix = Matrix::create(100, 200);
|
||||||
|
VectorPtr vector = Vector::create(100, false);
|
||||||
|
CpuSparseMatrix sparse(200, 300, 50);
|
||||||
|
|
||||||
|
// prepare arguments
|
||||||
|
BufferArgs argments;
|
||||||
|
argments.addArg(*matrix);
|
||||||
|
argments.addArg(*vector);
|
||||||
|
argments.addArg(sparse);
|
||||||
|
|
||||||
|
// function
|
||||||
|
auto function = [=](const BufferArgs& inputs) {
|
||||||
|
EXPECT_EQ(inputs.size(), 3);
|
||||||
|
|
||||||
|
// check inputs[0]
|
||||||
|
EXPECT_EQ(inputs[0].shape().ndims(), 2);
|
||||||
|
EXPECT_EQ(inputs[0].shape()[0], 100);
|
||||||
|
EXPECT_EQ(inputs[0].shape()[1], 200);
|
||||||
|
EXPECT_EQ(inputs[0].data(), matrix->getData());
|
||||||
|
|
||||||
|
EXPECT_EQ(inputs[0].matrix<DEVICE_TYPE_CPU>().getHeight(),
|
||||||
|
matrix->getHeight());
|
||||||
|
EXPECT_EQ(inputs[0].matrix<DEVICE_TYPE_CPU>().getWidth(),
|
||||||
|
matrix->getWidth());
|
||||||
|
EXPECT_EQ(inputs[0].matrix<DEVICE_TYPE_CPU>().getData(), matrix->getData());
|
||||||
|
|
||||||
|
// check inputs[1]
|
||||||
|
EXPECT_EQ(inputs[1].shape().ndims(), 1);
|
||||||
|
EXPECT_EQ(inputs[1].shape()[0], 100);
|
||||||
|
EXPECT_EQ(inputs[1].data(), vector->getData());
|
||||||
|
CpuVector inVector = inputs[1].vector<real, DEVICE_TYPE_CPU>();
|
||||||
|
EXPECT_EQ(inVector.getSize(), vector->getSize());
|
||||||
|
EXPECT_EQ(inVector.getData(), vector->getData());
|
||||||
|
|
||||||
|
// check inputs[2]
|
||||||
|
EXPECT_EQ(inputs[2].shape().ndims(), 2);
|
||||||
|
EXPECT_EQ(inputs[2].shape()[0], 200);
|
||||||
|
EXPECT_EQ(inputs[2].shape()[1], 300);
|
||||||
|
EXPECT_EQ(inputs[2].data(), sparse.getData());
|
||||||
|
// CHECK_EQ(inputs[2].sparse().nnz(), 50);
|
||||||
|
// CHECK_EQ(inputs[2].sparse().dataFormat(), SPARSE_CSR_FORMAT);
|
||||||
|
// CHECK_EQ(inputs[2].sparse().dataType(), SPARSE_FLOAT_VALUE);
|
||||||
|
EXPECT_EQ(inputs[2].sparse().getRowBuf(), sparse.getRows());
|
||||||
|
EXPECT_EQ(inputs[2].sparse().getColBuf(), sparse.getCols());
|
||||||
|
};
|
||||||
|
|
||||||
|
// call function
|
||||||
|
function(argments);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <DeviceType DType>
|
||||||
|
void FunctionApi(typename Tensor<real, DType>::Matrix& output,
|
||||||
|
const typename Tensor<real, DType>::Matrix& input);
|
||||||
|
|
||||||
|
template <>
|
||||||
|
void FunctionApi<DEVICE_TYPE_CPU>(CpuMatrix& output, const CpuMatrix& input) {
|
||||||
|
EXPECT_EQ(output.getHeight(), 100);
|
||||||
|
EXPECT_EQ(output.getWidth(), 200);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <>
|
||||||
|
void FunctionApi<DEVICE_TYPE_GPU>(GpuMatrix& output, const GpuMatrix& input) {
|
||||||
|
EXPECT_EQ(output.getHeight(), 10);
|
||||||
|
EXPECT_EQ(output.getWidth(), 20);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <DeviceType DType>
|
||||||
|
void Function(const BufferArgs& arguments) {
|
||||||
|
auto input = arguments[0].matrix<DType>();
|
||||||
|
auto output = arguments[1].matrix<DType>();
|
||||||
|
FunctionApi<DType>(output, input);
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST(BufferTest, Function) {
|
||||||
|
CpuMatrix cpuInput = CpuMatrix(100, 200);
|
||||||
|
CpuMatrix cpuOutput = CpuMatrix(100, 200);
|
||||||
|
BufferArgs cpuArgments;
|
||||||
|
cpuArgments.addArg(cpuInput);
|
||||||
|
cpuArgments.addArg(cpuOutput);
|
||||||
|
Function<DEVICE_TYPE_CPU>(cpuArgments);
|
||||||
|
|
||||||
|
GpuMatrix gpuInput = GpuMatrix(10, 20);
|
||||||
|
GpuMatrix gpuOutput = GpuMatrix(10, 20);
|
||||||
|
BufferArgs gpuArgments;
|
||||||
|
gpuArgments.addArg(gpuInput);
|
||||||
|
gpuArgments.addArg(gpuOutput);
|
||||||
|
Function<DEVICE_TYPE_GPU>(gpuArgments);
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace paddle
|
||||||
Loading…
Reference in new issue