parent
a88901109b
commit
c5e28dd1a0
@ -0,0 +1,76 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/scatter_op.h"
|
||||||
|
#include "paddle/framework/ddim.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
class ScatterOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||||
|
framework::DDim output_dims(ctx.Input<Tensor>("Ref")->dims());
|
||||||
|
ctx.Output<Tensor>("Out")->Resize(output_dims);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class ScatterGradOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||||
|
auto Updates_grad = ctx.Output<Tensor>(framework::GradVarName("Updates"));
|
||||||
|
auto Updates = ctx.Input<Tensor>("Updates");
|
||||||
|
auto Ref_grad = ctx.Output<Tensor>(framework::GradVarName("Ref"));
|
||||||
|
auto Ref = ctx.Input<Tensor>("Ref");
|
||||||
|
|
||||||
|
Ref_grad->Resize(Ref->dims());
|
||||||
|
Updates_grad->Resize(Updates->dims());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class ScatterOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
ScatterOpMaker(framework::OpProto *proto,
|
||||||
|
framework::OpAttrChecker *op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput("Ref", "The source input of scatter op");
|
||||||
|
AddInput("Index",
|
||||||
|
"The index input of scatter op where Ref will be updated");
|
||||||
|
AddInput("Updates", "The updated value of updates op");
|
||||||
|
AddOutput("Out", "The output of add op");
|
||||||
|
AddComment(R"DOC(
|
||||||
|
Scatter Operator by selecting from the first axis,
|
||||||
|
|
||||||
|
Out = Ref
|
||||||
|
Out[Index] = Ref[Index] + Updates
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP(scatter, ops::ScatterOp, ops::ScatterOpMaker, scatter_grad,
|
||||||
|
ops::ScatterGradOp);
|
||||||
|
REGISTER_OP_CPU_KERNEL(scatter,
|
||||||
|
ops::ScatterOpKernel<paddle::platform::CPUPlace, float>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
scatter_grad,
|
||||||
|
ops::ScatterGradientOpKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,20 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#define EIGEN_USE_GPU
|
||||||
|
#include "paddle/operators/scatter_op.h"
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP_GPU_KERNEL(scatter,
|
||||||
|
ops::ScatterOpKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,60 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include "gather.h"
|
||||||
|
#include "paddle/framework/eigen.h"
|
||||||
|
#include "paddle/framework/op_registry.h"
|
||||||
|
#include "scatter.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class ScatterOpKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
||||||
|
auto *Ref = ctx.Input<Tensor>("Ref");
|
||||||
|
auto *Index = ctx.Input<Tensor>("Index");
|
||||||
|
auto *Updates = ctx.Input<Tensor>("Updates");
|
||||||
|
auto *Out = ctx.Output<Tensor>("Out");
|
||||||
|
|
||||||
|
// In place output: Out = Ref, Out[Index] += Updates
|
||||||
|
Out->ShareDataWith<T>(*Ref);
|
||||||
|
// Apply ScatterUpdate: Out[index] += Updates[:]
|
||||||
|
ScatterUpdate<T>(ctx.GetPlace(), Updates, Index, Out);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class ScatterGradientOpKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
||||||
|
auto *dRef = ctx.Output<Tensor>(framework::GradVarName("Ref"));
|
||||||
|
auto *dUpdates = ctx.Output<Tensor>(framework::GradVarName("Updates"));
|
||||||
|
auto *Index = ctx.Input<Tensor>("Index");
|
||||||
|
auto *dO = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
||||||
|
|
||||||
|
// In place gradient: dRef = dO
|
||||||
|
dRef->ShareDataWith<T>(*dO);
|
||||||
|
dUpdates->mutable_data<T>(ctx.GetPlace());
|
||||||
|
// Gradient by Gather: dUpdates += dO[Index]
|
||||||
|
Gather<T>(ctx.GetPlace(), dO, Index, dUpdates);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,38 @@
|
|||||||
|
import unittest
|
||||||
|
from op_test_util import OpTestMeta
|
||||||
|
from gradient_checker import GradientChecker, create_op
|
||||||
|
import numpy
|
||||||
|
import paddle.v2.framework.core as core
|
||||||
|
from paddle.v2.framework.op import Operator
|
||||||
|
|
||||||
|
|
||||||
|
class TestScatterOp(unittest.TestCase):
|
||||||
|
__metaclass__ = OpTestMeta
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
self.type = "scatter"
|
||||||
|
ref_np = numpy.ones((3, 3)).astype("float32")
|
||||||
|
index_np = numpy.array([1, 2]).astype("int32")
|
||||||
|
updates_np = numpy.random.random((2, 3)).astype("float32")
|
||||||
|
output_np = numpy.copy(ref_np)
|
||||||
|
output_np[index_np] += updates_np
|
||||||
|
self.inputs = {'Ref': ref_np, 'Index': index_np, 'Updates': updates_np}
|
||||||
|
self.outputs = {'Out': output_np}
|
||||||
|
|
||||||
|
|
||||||
|
class TestScatterGradOp(GradientChecker):
|
||||||
|
def test_scatter_grad(self):
|
||||||
|
op = create_op("scatter")
|
||||||
|
# test data setup
|
||||||
|
ref_np = numpy.ones((3, 10)).astype("float32")
|
||||||
|
index_np = numpy.array([1, 2]).astype("int32")
|
||||||
|
updates_np = numpy.random.random((2, 10)).astype("float32")
|
||||||
|
output_np = numpy.copy(ref_np)
|
||||||
|
output_np[index_np] += updates_np
|
||||||
|
inputs = {'Ref': ref_np, 'Index': index_np, 'Updates': updates_np}
|
||||||
|
# check gradient
|
||||||
|
self.check_grad(op, inputs, set(["Updates", "Ref"]), "Out")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue