Add split selected rows op (#7604)
* add split selected rows op * update comment * add grad check * registry cuda kernel * fix ci failedadd_depthwiseConv_op_gpu
parent
161bd4a4c3
commit
c79d530ad3
@ -0,0 +1,114 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/split_selected_rows_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
class SplitSelectedRowsOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
SplitSelectedRowsOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput("X", "The input SelectedRows.");
|
||||||
|
AddOutput("Out", "The outputs of input SelectedRows.").AsDuplicable();
|
||||||
|
AddAttr<std::vector<int>>("rows_sections", "Rows section for output.")
|
||||||
|
.SetDefault(std::vector<int>({}));
|
||||||
|
AddAttr<std::vector<int>>("height_sections",
|
||||||
|
"Height for each output SelectedRows.")
|
||||||
|
.SetDefault(std::vector<int>({}));
|
||||||
|
|
||||||
|
AddComment(R"DOC(
|
||||||
|
Split a SelectedRows with a specified rows section.
|
||||||
|
height_sections is only needed when need to split the dims of the original tensor.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
Input:
|
||||||
|
X.rows = {0, 7, 5}
|
||||||
|
X.height = 12
|
||||||
|
Attr:
|
||||||
|
rows_sections = {1, 2}
|
||||||
|
height_sections = {}
|
||||||
|
Out:
|
||||||
|
out0.rows = {0}
|
||||||
|
out0.height = 12
|
||||||
|
out1.rows = {7, 5}
|
||||||
|
out2.height = 12
|
||||||
|
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class SplitSelectedRowsOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("X"), "SplitSelectedRowsOp must has input X.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutputs("Out"),
|
||||||
|
"SplitSelectedRowsOp must has output Out.");
|
||||||
|
|
||||||
|
std::vector<int> height_sections =
|
||||||
|
ctx->Attrs().Get<std::vector<int>>("height_sections");
|
||||||
|
std::vector<int> rows_sections =
|
||||||
|
ctx->Attrs().Get<std::vector<int>>("rows_sections");
|
||||||
|
PADDLE_ENFORCE_EQ(
|
||||||
|
rows_sections.size(), ctx->Outputs("Out").size(),
|
||||||
|
"The size of rows section should be the same with Outputs size.");
|
||||||
|
int64_t n = ctx->Outputs("Out").size();
|
||||||
|
|
||||||
|
std::vector<framework::DDim> outs_dims;
|
||||||
|
outs_dims.reserve(n);
|
||||||
|
|
||||||
|
// make output dims
|
||||||
|
for (int64_t i = 0; i < n; ++i) {
|
||||||
|
auto dims = ctx->GetInputDim("X");
|
||||||
|
if (height_sections.size()) {
|
||||||
|
PADDLE_ENFORCE_EQ(
|
||||||
|
height_sections.size(), static_cast<size_t>(n),
|
||||||
|
"The size of height section should be the same with height"
|
||||||
|
" section size.");
|
||||||
|
dims[0] = height_sections[i];
|
||||||
|
}
|
||||||
|
outs_dims.push_back(dims);
|
||||||
|
}
|
||||||
|
ctx->SetOutputsDim("Out", outs_dims);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class SplitSelectedRowsGradMaker : public framework::SingleGradOpDescMaker {
|
||||||
|
public:
|
||||||
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
||||||
|
auto *grad_op = new framework::OpDesc();
|
||||||
|
grad_op->SetType("sum");
|
||||||
|
grad_op->SetInput("X", OutputGrad("Out"));
|
||||||
|
grad_op->SetOutput("Out", InputGrad("X"));
|
||||||
|
grad_op->SetAttrMap(Attrs());
|
||||||
|
return std::unique_ptr<framework::OpDesc>(grad_op);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OPERATOR(split_selected_rows, ops::SplitSelectedRowsOp,
|
||||||
|
ops::SplitSelectedRowsOpMaker,
|
||||||
|
ops::SplitSelectedRowsGradMaker);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
split_selected_rows,
|
||||||
|
ops::SplitSelectedRowsOpKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,19 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/split_selected_rows_op.h"
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP_CUDA_KERNEL(
|
||||||
|
split_selected_rows,
|
||||||
|
ops::SplitSelectedRowsOpKernel<paddle::platform::CUDADeviceContext, float>);
|
@ -0,0 +1,58 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <vector>
|
||||||
|
#include "paddle/framework/op_registry.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class SplitSelectedRowsOpKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||||
|
auto* x = ctx.Input<framework::SelectedRows>("X");
|
||||||
|
auto outs = ctx.MultiOutput<framework::SelectedRows>("Out");
|
||||||
|
|
||||||
|
auto rows_sections = ctx.Attr<std::vector<int>>("rows_sections");
|
||||||
|
auto height_sections = ctx.Attr<std::vector<int>>("height_sections");
|
||||||
|
|
||||||
|
int64_t n = outs.size();
|
||||||
|
int offset = 0;
|
||||||
|
|
||||||
|
for (int64_t i = 0; i < n; ++i) {
|
||||||
|
framework::Vector<int64_t> out_rows;
|
||||||
|
for (int64_t j = 0; j < rows_sections[i]; ++j) {
|
||||||
|
out_rows.push_back(x->rows()[offset + j]);
|
||||||
|
}
|
||||||
|
|
||||||
|
auto& out = outs[i];
|
||||||
|
auto x_dims = x->GetCompleteDims();
|
||||||
|
x_dims[0] = rows_sections[i];
|
||||||
|
out->mutable_value()->mutable_data<T>(x_dims, ctx.GetPlace());
|
||||||
|
framework::Copy(x->value().Slice(offset, rows_sections[i] + offset),
|
||||||
|
x->place(), ctx.device_context(), out->mutable_value());
|
||||||
|
outs[i]->set_rows(out_rows);
|
||||||
|
if (height_sections.size()) {
|
||||||
|
outs[i]->set_height(height_sections[i]);
|
||||||
|
}
|
||||||
|
offset += rows_sections[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,128 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
#
|
||||||
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
#you may not use this file except in compliance with the License.
|
||||||
|
#You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
#Unless required by applicable law or agreed to in writing, software
|
||||||
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
#See the License for the specific language governing permissions and
|
||||||
|
#limitations under the License.
|
||||||
|
import unittest
|
||||||
|
import paddle.v2.fluid.core as core
|
||||||
|
import numpy as np
|
||||||
|
from paddle.v2.fluid.op import Operator
|
||||||
|
|
||||||
|
|
||||||
|
class TestSpliteSelectedRows(unittest.TestCase):
|
||||||
|
def get_places(self):
|
||||||
|
places = [core.CPUPlace()]
|
||||||
|
if core.is_compile_gpu():
|
||||||
|
places.append(core.CUDAPlace(0))
|
||||||
|
return places
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
for place in self.get_places():
|
||||||
|
self.check_with_place(place)
|
||||||
|
|
||||||
|
def test_check_grad(self):
|
||||||
|
for place in self.get_places():
|
||||||
|
self.check_grad_with_place(place)
|
||||||
|
|
||||||
|
def check_with_place(self, place):
|
||||||
|
scope = core.Scope()
|
||||||
|
rows = [0, 5, 7, 4]
|
||||||
|
height = 10
|
||||||
|
row_numel = 2
|
||||||
|
|
||||||
|
# initialize input variable X
|
||||||
|
x = scope.var('X').get_selected_rows()
|
||||||
|
x.set_rows(rows)
|
||||||
|
x.set_height(height)
|
||||||
|
np_array = np.ones((len(rows), row_numel)).astype("float32")
|
||||||
|
np_array[0, 0] = 2.0
|
||||||
|
np_array[2, 1] = 4.0
|
||||||
|
x_tensor = x.get_tensor()
|
||||||
|
x_tensor.set(np_array, place)
|
||||||
|
|
||||||
|
rows_sections = [2, 2]
|
||||||
|
height_sections = []
|
||||||
|
|
||||||
|
# initialize output variables [out0, out1]
|
||||||
|
out0 = scope.var('out0').get_selected_rows()
|
||||||
|
out1 = scope.var('out1').get_selected_rows()
|
||||||
|
|
||||||
|
# expected output selected rows
|
||||||
|
expected_out0_rows = [0, 5]
|
||||||
|
expected_out1_rows = [7, 4]
|
||||||
|
expected_height = height
|
||||||
|
|
||||||
|
op = Operator(
|
||||||
|
"split_selected_rows",
|
||||||
|
X="X",
|
||||||
|
Out=["out0", "out1"],
|
||||||
|
rows_sections=rows_sections,
|
||||||
|
height_sections=height_sections)
|
||||||
|
|
||||||
|
op.run(scope, place)
|
||||||
|
|
||||||
|
self.assertEqual(out0.rows(), expected_out0_rows)
|
||||||
|
self.assertEqual(out1.rows(), expected_out1_rows)
|
||||||
|
|
||||||
|
self.assertEqual(out0.height(), expected_height)
|
||||||
|
self.assertEqual(out1.height(), expected_height)
|
||||||
|
|
||||||
|
self.assertAlmostEqual(2.0, np.array(out0.get_tensor())[0, 0])
|
||||||
|
self.assertAlmostEqual(4.0, np.array(out1.get_tensor())[0, 1])
|
||||||
|
|
||||||
|
def check_grad_with_place(self, place):
|
||||||
|
scope = core.Scope()
|
||||||
|
height = 10
|
||||||
|
row_numel = 2
|
||||||
|
|
||||||
|
# attr
|
||||||
|
rows_sections = [2, 2]
|
||||||
|
height_sections = []
|
||||||
|
|
||||||
|
# initialize input variable X
|
||||||
|
out0_grad = scope.var("out0@GRAD").get_selected_rows()
|
||||||
|
rows0 = [0, 5]
|
||||||
|
out0_grad.set_rows(rows0)
|
||||||
|
out0_grad.set_height(height)
|
||||||
|
out0_grad_tensor = out0_grad.get_tensor()
|
||||||
|
np_array = np.ones((len(rows0), row_numel)).astype("float32")
|
||||||
|
np_array[0, 0] = 2.0
|
||||||
|
out0_grad_tensor.set(np_array, place)
|
||||||
|
|
||||||
|
out1_grad = scope.var("out1@GRAD").get_selected_rows()
|
||||||
|
rows1 = [7, 5]
|
||||||
|
out1_grad.set_rows(rows1)
|
||||||
|
out1_grad.set_height(height)
|
||||||
|
out1_grad_tensor = out1_grad.get_tensor()
|
||||||
|
np_array = np.ones((len(rows1), row_numel)).astype("float32")
|
||||||
|
np_array[0, 1] = 4.0
|
||||||
|
out1_grad_tensor.set(np_array, place)
|
||||||
|
|
||||||
|
x_grad = scope.var("X@GRAD").get_selected_rows()
|
||||||
|
|
||||||
|
grad_op = Operator(
|
||||||
|
"sum",
|
||||||
|
X=["out0@GRAD", "out1@GRAD"],
|
||||||
|
Out="X@GRAD",
|
||||||
|
rows_sections=rows_sections,
|
||||||
|
height_sections=height_sections)
|
||||||
|
|
||||||
|
grad_op.run(scope, place)
|
||||||
|
|
||||||
|
self.assertEqual(x_grad.rows(), rows0 + rows1)
|
||||||
|
self.assertEqual(x_grad.height(), height)
|
||||||
|
|
||||||
|
self.assertAlmostEqual(2.0, np.array(x_grad.get_tensor())[0, 0])
|
||||||
|
self.assertAlmostEqual(4.0, np.array(x_grad.get_tensor())[2, 1])
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue