Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into add_program_proto

update-doc-pybind
fengjiayi 8 years ago
commit c869b8e2eb

@ -36,10 +36,6 @@ before_install:
# protobuf version.
- sudo pip install -r $TRAVIS_BUILD_DIR/python/requirements.txt
- sudo pip install wheel sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit LinkChecker
- curl https://glide.sh/get | bash
- eval "$(GIMME_GO_VERSION=1.8.3 gimme)"
- go get -u github.com/alecthomas/gometalinter
- gometalinter --install
- |
function timeout() { perl -e 'alarm shift; exec @ARGV' "$@"; }
script:

@ -27,7 +27,7 @@ if(NOT CMAKE_CROSSCOMPILING)
endif(NOT CMAKE_CROSSCOMPILING)
find_package(Git REQUIRED)
find_package(Threads REQUIRED)
if(NOT ANDROID)
if(NOT ANDROID AND NOT IOS)
find_package(Boost QUIET)
endif()
@ -64,27 +64,29 @@ if(NOT CMAKE_BUILD_TYPE)
FORCE)
endif()
if(ANDROID)
if(${CMAKE_SYSTEM_VERSION} VERSION_LESS "16")
message(FATAL_ERROR "Unsupport standalone toolchains with Android API level lower than 16")
elseif(${CMAKE_SYSTEM_VERSION} VERSION_LESS "21")
# TODO: support glog for Android api 16 ~ 19 in the future
message(WARNING "Using the unofficial git repository <https://github.com/Xreki/glog.git> instead")
if(ANDROID OR IOS)
if(ANDROID)
if(${CMAKE_SYSTEM_VERSION} VERSION_LESS "16")
message(FATAL_ERROR "Unsupport standalone toolchains with Android API level lower than 16")
elseif(${CMAKE_SYSTEM_VERSION} VERSION_LESS "21")
# TODO: support glog for Android api 16 ~ 19 in the future
message(WARNING "Using the unofficial git repository <https://github.com/Xreki/glog.git> instead")
endif()
endif()
set(WITH_GPU OFF CACHE STRING
"Disable GPU when cross-compiling for Android" FORCE)
"Disable GPU when cross-compiling for Android and iOS" FORCE)
set(WITH_AVX OFF CACHE STRING
"Disable AVX when cross-compiling for Android" FORCE)
"Disable AVX when cross-compiling for Android and iOS" FORCE)
set(WITH_PYTHON OFF CACHE STRING
"Disable PYTHON when cross-compiling for Android" FORCE)
"Disable PYTHON when cross-compiling for Android and iOS" FORCE)
set(WITH_RDMA OFF CACHE STRING
"Disable RDMA when cross-compiling for Android" FORCE)
"Disable RDMA when cross-compiling for Android and iOS" FORCE)
set(WITH_MKLDNN OFF CACHE STRING
"Disable MKLDNN when cross-compiling for Android" FORCE)
"Disable MKLDNN when cross-compiling for Android and iOS" FORCE)
set(WITH_MKLML OFF CACHE STRING
"Disable MKLML package when cross-compiling for Android" FORCE)
endif(ANDROID)
"Disable MKLML package when cross-compiling for Android and iOS" FORCE)
endif()
set(THIRD_PARTY_PATH "${CMAKE_BINARY_DIR}/third_party" CACHE STRING
"A path setting third party libraries download & build directories.")

@ -171,3 +171,10 @@ if (REFERENCE_CBLAS_INCLUDE_DIR AND REFERENCE_CBLAS_LIBRARY)
add_definitions(-DPADDLE_USE_REFERENCE_CBLAS)
message(STATUS "Found reference-cblas (include: ${CBLAS_INC_DIR}, library: ${CBLAS_LIBRARIES})")
endif()
if(IOS_USE_VECLIB_FOR_BLAS AND VECLIB_FOUND)
set(CBLAS_FOUND ON)
set(CBLAS_PROVIDER vecLib)
set(CBLAS_INC_DIR ${VECLIB_INC_DIR})
add_definitions(-DPADDLE_USE_VECLIB)
endif()

File diff suppressed because it is too large Load Diff

@ -39,13 +39,14 @@ ExternalProject_Add(
PREFIX ${GFLAGS_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${GFLAGS_INSTALL_DIR}
CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON
CMAKE_ARGS -DBUILD_TESTING=OFF
CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DCMAKE_INSTALL_PREFIX=${GFLAGS_INSTALL_DIR}
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DBUILD_TESTING=OFF
-DCMAKE_BUILD_TYPE=Release
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${GFLAGS_INSTALL_DIR}
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_BUILD_TYPE:STRING=Release

@ -34,16 +34,17 @@ ExternalProject_Add(
PREFIX ${GLOG_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${GLOG_INSTALL_DIR}
CMAKE_ARGS -DCMAKE_INSTALL_LIBDIR=${GLOG_INSTALL_DIR}/lib
CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON
CMAKE_ARGS -DWITH_GFLAGS=ON
CMAKE_ARGS -Dgflags_DIR=${GFLAGS_INSTALL_DIR}/lib/cmake/gflags
CMAKE_ARGS -DBUILD_TESTING=OFF
CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DCMAKE_INSTALL_PREFIX=${GLOG_INSTALL_DIR}
-DCMAKE_INSTALL_LIBDIR=${GLOG_INSTALL_DIR}/lib
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DWITH_GFLAGS=ON
-Dgflags_DIR=${GFLAGS_INSTALL_DIR}/lib/cmake/gflags
-DBUILD_TESTING=OFF
-DCMAKE_BUILD_TYPE=Release
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${GLOG_INSTALL_DIR}
-DCMAKE_INSTALL_LIBDIR:PATH=${GLOG_INSTALL_DIR}/lib
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON

@ -48,15 +48,16 @@ IF(WITH_TESTING)
PREFIX ${GTEST_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${GTEST_INSTALL_DIR}
CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON
CMAKE_ARGS -DBUILD_GMOCK=ON
CMAKE_ARGS -Dgtest_disable_pthreads=ON
CMAKE_ARGS -Dgtest_force_shared_crt=ON
CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DCMAKE_INSTALL_PREFIX=${GTEST_INSTALL_DIR}
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DBUILD_GMOCK=ON
-Dgtest_disable_pthreads=ON
-Dgtest_force_shared_crt=ON
-DCMAKE_BUILD_TYPE=Release
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${GTEST_INSTALL_DIR}
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_BUILD_TYPE:STRING=Release

@ -29,30 +29,41 @@ IF(NOT ${CBLAS_FOUND})
"${CBLAS_INSTALL_DIR}/lib/${CMAKE_STATIC_LIBRARY_PREFIX}openblas${CMAKE_STATIC_LIBRARY_SUFFIX}"
CACHE FILEPATH "openblas library." FORCE)
IF(APPLE)
SET(OPENBLAS_CC "${CMAKE_C_COMPILER} -isysroot ${CMAKE_OSX_SYSROOT}")
SET(COMMON_ARGS CC=${OPENBLAS_CC} NO_SHARED=1 NO_LAPACK=1 libs)
ELSE()
SET(COMMON_ARGS CC=${CMAKE_C_COMPILER} NO_SHARED=1 NO_LAPACK=1 libs)
ENDIF()
SET(OPENBLAS_CC "${CMAKE_C_COMPILER}")
IF(CMAKE_CROSSCOMPILING)
SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER})
GET_FILENAME_COMPONENT(CROSS_SUFFIX ${CMAKE_C_COMPILER} DIRECTORY)
SET(CROSS_SUFFIX ${CROSS_SUFFIX}/)
IF(ANDROID)
# arm_soft_fp_abi branch of OpenBLAS to support softfp
# https://github.com/xianyi/OpenBLAS/tree/arm_soft_fp_abi
SET(OPENBLAS_COMMIT "b5c96fcfcdc82945502a2303116a64d89985daf5")
IF(ANDROID_ABI MATCHES "^armeabi(-v7a)?$")
SET(TARGET "ARMV7")
SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 ARM_SOFTFP_ABI=1 USE_THREAD=0)
ELSEIF(ANDROID_ABI STREQUAL "arm64-v8a")
SET(TARGET "ARMV8")
SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV8 BINARY=64 USE_THREAD=0)
ENDIF()
ELSEIF(IOS)
# FIXME(liuyiqun): support multiple architectures
SET(OPENBLAS_COMMIT "b5c96fcfcdc82945502a2303116a64d89985daf5")
SET(OPENBLAS_CC "${OPENBLAS_CC} ${CMAKE_C_FLAGS} -isysroot ${CMAKE_OSX_SYSROOT}")
IF(CMAKE_OSX_ARCHITECTURES MATCHES "armv7")
SET(OPENBLAS_CC "${OPENBLAS_CC} -arch armv7")
SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 ARM_SOFTFP_ABI=1 USE_THREAD=0)
ELSEIF(CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
SET(OPENBLAS_CC "${OPENBLAS_CC} -arch arm64")
SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV8 BINARY=64 USE_THREAD=0 CROSS_SUFFIX=${CROSS_SUFFIX})
ENDIF()
SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER} TARGET=${TARGET} ARM_SOFTFP_ABI=1 USE_THREAD=0)
ELSEIF(RPI)
# use hardfp
SET(OPENBLAS_COMMIT "v0.2.20")
SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER} TARGET=ARMV7 USE_THREAD=0)
SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 USE_THREAD=0)
ENDIF()
ELSE()
IF(APPLE)
SET(OPENBLAS_CC "${CMAKE_C_COMPILER} -isysroot ${CMAKE_OSX_SYSROOT}")
ENDIF()
SET(OPENBLAS_COMMIT "v0.2.20")
SET(OPTIONAL_ARGS "")
IF(CMAKE_SYSTEM_PROCESSOR MATCHES "^x86(_64)?$")
@ -60,6 +71,8 @@ IF(NOT ${CBLAS_FOUND})
ENDIF()
ENDIF()
SET(COMMON_ARGS CC=${OPENBLAS_CC} NO_SHARED=1 NO_LAPACK=1 libs)
ExternalProject_Add(
extern_openblas
${EXTERNAL_PROJECT_LOG_ARGS}

@ -173,7 +173,8 @@ FUNCTION(build_protobuf TARGET_NAME BUILD_FOR_HOST)
"-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}"
"-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}"
"-Dprotobuf_WITH_ZLIB=ON"
"-DZLIB_ROOT:FILEPATH=${ZLIB_ROOT}")
"-DZLIB_ROOT:FILEPATH=${ZLIB_ROOT}"
${EXTERNAL_OPTIONAL_ARGS})
SET(OPTIONAL_CACHE_ARGS "-DZLIB_ROOT:STRING=${ZLIB_ROOT}")
ENDIF()

@ -12,16 +12,17 @@
# See the License for the specific language governing permissions and
# limitations under the License.
INCLUDE(ExternalProject)
IF(NOT WITH_PYTHON)
return()
ENDIF()
INCLUDE(python_module)
FIND_PACKAGE(PythonInterp 2.7)
IF(WITH_PYTHON)
FIND_PACKAGE(PythonLibs 2.7)
# Fixme: Maybe find a static library. Get SHARED/STATIC by FIND_PACKAGE.
ADD_LIBRARY(python SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET python PROPERTY IMPORTED_LOCATION ${PYTHON_LIBRARIES})
ENDIF(WITH_PYTHON)
FIND_PACKAGE(PythonLibs 2.7)
# Fixme: Maybe find a static library. Get SHARED/STATIC by FIND_PACKAGE.
ADD_LIBRARY(python SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET python PROPERTY IMPORTED_LOCATION ${PYTHON_LIBRARIES})
SET(py_env "")
IF(PYTHONINTERP_FOUND)
@ -36,9 +37,5 @@ IF(PYTHONINTERP_FOUND)
ENDIF()
ENDIF(PYTHONINTERP_FOUND)
IF(WITH_PYTHON)
INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_DIR})
INCLUDE_DIRECTORIES(${PYTHON_NUMPY_INCLUDE_DIR})
ELSE()
SET(PYTHON_LIBRARIES "")
ENDIF()
INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_DIR})
INCLUDE_DIRECTORIES(${PYTHON_NUMPY_INCLUDE_DIR})

@ -12,6 +12,10 @@
# See the License for the specific language governing permissions and
# limitations under the License.
IF(NOT WITH_SWIG_PY)
return()
ENDIF()
FIND_PACKAGE(SWIG)
IF(NOT SWIG_FOUND)

@ -16,25 +16,14 @@ INCLUDE(ExternalProject)
SET(WARPCTC_SOURCES_DIR ${THIRD_PARTY_PATH}/warpctc)
SET(WARPCTC_INSTALL_DIR ${THIRD_PARTY_PATH}/install/warpctc)
SET(WARPCTC_INCLUDE_DIR "${WARPCTC_INSTALL_DIR}/include" CACHE PATH "Warp-ctc Directory" FORCE)
INCLUDE_DIRECTORIES(${WARPCTC_INCLUDE_DIR})
SET(WARPCTC_LIB_DIR "${WARPCTC_INSTALL_DIR}/lib" CACHE PATH "Warp-ctc Library Directory" FORCE)
IF(WIN32)
SET(WARPCTC_LIBRARIES
"${WARPCTC_INSTALL_DIR}/lib/warpctc.dll" CACHE FILEPATH "Warp-ctc Library" FORCE)
ELSE(WIN32)
IF(APPLE)
SET(_warpctc_SHARED_SUFFIX dylib)
ELSE(APPLE)
SET(_warpctc_SHARED_SUFFIX so)
ENDIF(APPLE)
SET(WARPCTC_LIBRARIES
"${WARPCTC_INSTALL_DIR}/lib/libwarpctc.${_warpctc_SHARED_SUFFIX}" CACHE FILEPATH "Warp-ctc Library" FORCE)
ENDIF(WIN32)
SET(WARPCTC_INCLUDE_DIR "${WARPCTC_INSTALL_DIR}/include"
CACHE PATH "Warp-ctc Directory" FORCE)
# Used in unit test test_WarpCTCLayer
SET(WARPCTC_LIB_DIR "${WARPCTC_INSTALL_DIR}/lib"
CACHE PATH "Warp-ctc Library Directory" FORCE)
SET(WARPCTC_LIBRARIES "${WARPCTC_INSTALL_DIR}/lib/libwarpctc${CMAKE_SHARED_LIBRARY_SUFFIX}"
CACHE FILEPATH "Warp-ctc Library" FORCE)
IF(CMAKE_CXX_COMPILER_ID STREQUAL "Clang" OR CMAKE_CXX_COMPILER_ID STREQUAL "AppleClang" )
SET(USE_OMP OFF)
@ -49,22 +38,26 @@ ExternalProject_Add(
PREFIX ${WARPCTC_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${WARPCTC_INSTALL_DIR}
CMAKE_ARGS -DWITH_GPU=${WITH_GPU}
CMAKE_ARGS -DWITH_OMP=${USE_OMP}
CMAKE_ARGS -DWITH_TORCH=OFF
CMAKE_ARGS -DCMAKE_DISABLE_FIND_PACKAGE_Torch=ON
CMAKE_ARGS -DBUILD_SHARED=ON
CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON
CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DCMAKE_INSTALL_PREFIX=${WARPCTC_INSTALL_DIR}
-DWITH_GPU=${WITH_GPU}
-DWITH_OMP=${USE_OMP}
-DWITH_TORCH=OFF
-DCMAKE_DISABLE_FIND_PACKAGE_Torch=ON
-DBUILD_SHARED=ON
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DCMAKE_BUILD_TYPE=Release
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_BUILD_TYPE:STRING=Release
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_INSTALL_PREFIX:PATH=${WARPCTC_INSTALL_DIR}
)
MESSAGE(STATUS "warp-ctc library: ${WARPCTC_LIBRARIES}")
INCLUDE_DIRECTORIES(${WARPCTC_INCLUDE_DIR})
ADD_LIBRARY(warpctc STATIC IMPORTED GLOBAL)
SET_PROPERTY(TARGET warpctc PROPERTY IMPORTED_LOCATION ${WARPCTC_LIBRARIES})
ADD_DEPENDENCIES(warpctc extern_warpctc)

@ -34,15 +34,16 @@ ExternalProject_Add(
GIT_TAG "v1.2.8"
PREFIX ${ZLIB_SOURCES_DIR}
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${ZLIB_INSTALL_DIR}
CMAKE_ARGS -DBUILD_SHARED_LIBS=OFF
CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON
CMAKE_ARGS -DCMAKE_MACOSX_RPATH=ON
CMAKE_ARGS -DCMAKE_BUILD_TYPE=Release
-DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
-DCMAKE_INSTALL_PREFIX=${ZLIB_INSTALL_DIR}
-DBUILD_SHARED_LIBS=OFF
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DCMAKE_MACOSX_RPATH=ON
-DCMAKE_BUILD_TYPE=Release
${EXTERNAL_OPTIONAL_ARGS}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${ZLIB_INSTALL_DIR}
-DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=ON
-DCMAKE_BUILD_TYPE:STRING=Release

@ -128,8 +128,10 @@ set(GPU_COMMON_FLAGS
)
if (APPLE)
# On Mac OS X build fat binaries with x86_64 architectures by default.
set (CMAKE_OSX_ARCHITECTURES "x86_64" CACHE STRING "Build architectures for OSX" FORCE)
if(NOT CMAKE_CROSSCOMPILING)
# On Mac OS X build fat binaries with x86_64 architectures by default.
set (CMAKE_OSX_ARCHITECTURES "x86_64" CACHE STRING "Build architectures for OSX" FORCE)
endif()
else()
set(GPU_COMMON_FLAGS
-Wall

@ -24,11 +24,10 @@ IF(WIN32)
SET(HOST_SYSTEM "win32")
ELSE(WIN32)
IF(APPLE)
EXEC_PROGRAM (sw_vers ARGS -productVersion OUTPUT_VARIABLE MACOSX_VERSION)
STRING(REGEX MATCH "[0-9]+.[0-9]+" VERSION "${MACOSX_VERSION}")
SET(MACOS_VERSION ${VERSION})
SET(HOST_SYSTEM "macosx")
IF(NOT DEFINED ENV{MACOSX_DEPLOYMENT_TARGET})
EXEC_PROGRAM(sw_vers ARGS -productVersion OUTPUT_VARIABLE HOST_SYSTEM_VERSION)
STRING(REGEX MATCH "[0-9]+.[0-9]+" MACOS_VERSION "${HOST_SYSTEM_VERSION}")
IF(NOT DEFINED $ENV{MACOSX_DEPLOYMENT_TARGET})
# Set cache variable - end user may change this during ccmake or cmake-gui configure.
SET(CMAKE_OSX_DEPLOYMENT_TARGET ${MACOS_VERSION} CACHE STRING
"Minimum OS X version to target for deployment (at runtime); newer APIs weak linked. Set to empty string for default value.")
@ -49,6 +48,8 @@ ELSE(WIN32)
ELSEIF(LINUX_ISSUE MATCHES "Fedora")
SET(HOST_SYSTEM "fedora")
ENDIF()
STRING(REGEX MATCH "(([0-9]+)\\.)+([0-9]+)" HOST_SYSTEM_VERSION "${LINUX_ISSUE}")
ENDIF(EXISTS "/etc/issue")
IF(EXISTS "/etc/redhat-release")
@ -70,7 +71,7 @@ CMAKE_HOST_SYSTEM_INFORMATION(RESULT CPU_CORES QUERY NUMBER_OF_LOGICAL_CORES)
MARK_AS_ADVANCED(HOST_SYSTEM CPU_CORES)
MESSAGE(STATUS "Found Paddle host system: ${HOST_SYSTEM}")
MESSAGE(STATUS "Found Paddle host system: ${HOST_SYSTEM}, version: ${HOST_SYSTEM_VERSION}")
MESSAGE(STATUS "Found Paddle host system's CPU: ${CPU_CORES} cores")
# configuration for cross-compiling
@ -82,6 +83,9 @@ IF(DEFINED CMAKE_SYSTEM_NAME)
ELSEIF(${CMAKE_SYSTEM_NAME} STREQUAL "RPi")
SET(RPI TRUE)
INCLUDE(cross_compiling/raspberry_pi)
ELSEIF(${CMAKE_SYSTEM_NAME} STREQUAL "iOS")
SET(IOS TRUE)
INCLUDE(cross_compiling/ios)
ENDIF()
ENDIF()

@ -25,7 +25,9 @@ function(target_circle_link_libraries TARGET_NAME)
endif()
endforeach()
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang" OR "${CMAKE_CXX_COMPILER_ID}" STREQUAL "AppleClang")
list(APPEND LIBS "-undefined dynamic_lookup")
if(IOS AND NOT IOS_ENABLE_BITCODE)
list(APPEND LIBS "-undefined dynamic_lookup")
endif()
endif()
list(REVERSE libsInArgn)
target_link_libraries(${TARGET_NAME}

@ -3,7 +3,7 @@
## Ingredients
As our design principle is starting from the essence: how could we
allow users to express and solve their problems at neural networks.
allow users to express and solve their problems as neural networks.
Some essential concepts that our API have to provide include:
1. A *topology* is an expression of *layers*.
@ -233,7 +233,7 @@ paddle.dist_train(model,
num_parameter_servers=15)
```
The pseudo code if `paddle.dist_train` is as follows:
The pseudo code of `paddle.dist_train` is as follows:
```python
def dist_train(topology, parameters, trainer, reader, ...):

@ -1,17 +1,17 @@
## Auto Gradient Checker Design
## Backgraound
- Operator forward computing is easy to check if the result is right because it has a clear definition. **But** backpropagation is a notoriously difficult algorithm to debug and get right:
- 1. you should get the right backpropagation formula according to the forward computation.
- 2. you should implement it right in CPP.
- 3. it's difficult to prepare test data.
- Generally, it is easy to check whether the forward computation of an Operator is correct or not. However, backpropagation is a notoriously difficult algorithm to debug and get right:
1. you should get the right backpropagation formula according to the forward computation.
2. you should implement it right in CPP.
3. it's difficult to prepare test data.
- Auto gradient check gets a numeric gradient by forward Operator and use it as a reference of the backward Operator's result. It has several advantages:
- 1. numeric gradient checker only need forward operator.
- 2. user only need to prepare the input data for forward Operator.
- Auto gradient checking gets a numerical gradient by forward Operator and use it as a reference of the backward Operator's result. It has several advantages:
1. numerical gradient checker only need forward operator.
2. user only need to prepare the input data for forward Operator.
## Mathematical Theory
The following two document from stanford has a detailed explanation of how to get numeric gradient and why it's useful.
The following two document from Stanford has a detailed explanation of how to get numerical gradient and why it's useful.
- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization)
- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96)
@ -20,7 +20,7 @@ The following two document from stanford has a detailed explanation of how to ge
## Numeric Gradient Implementation
### Python Interface
```python
def get_numeric_gradient(op,
def get_numerical_gradient(op,
input_values,
output_name,
input_to_check,
@ -30,13 +30,13 @@ def get_numeric_gradient(op,
Get Numeric Gradient for an operator's input.
:param op: C++ operator instance, could be an network
:param input_values: The input variables. Should be an dictionary, key is
variable name. Value is numpy array.
:param input_values: The input variables. Should be an dictionary, whose key is
variable name, and value is numpy array.
:param output_name: The final output variable name.
:param input_to_check: The input variable need to get gradient.
:param input_to_check: The input variable with respect to which to compute the gradient.
:param delta: The perturbation value for numeric gradient method. The
smaller delta is, the more accurate result will get. But if that delta is
too small, it could occur numerical stability problem.
too small, it will suffer from numerical stability problem.
:param local_scope: The local scope used for get_numeric_gradient.
:return: The gradient array in numpy format.
"""
@ -45,28 +45,28 @@ def get_numeric_gradient(op,
### Explaination:
- Why need `output_name`
- One Operator may have multiple Output, you can get independent gradient from each Output. So user should set one output to calculate.
- An Operator may have multiple Output, one can get independent gradient from each Output. So caller should specify the name of the output variable.
- Why need `input_to_check`
- One operator may have multiple inputs. Gradient Op can calculate the gradient of these Inputs at the same time. But Numeric Gradient needs to calculate them one by one. So `get_numeric_gradient` is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call `get_numeric_gradient` multiple times.
- One operator may have multiple inputs. Gradient Op can calculate the gradient of these inputs at the same time. But Numeric Gradient needs to calculate them one by one. So `get_numeric_gradient` is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call `get_numeric_gradient` multiple times.
### Core Algorithm Implementation
```python
# we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element.
# we only compute gradient of one element a time.
# we use a for loop to compute the gradient of each element.
for i in xrange(tensor_size):
# get one input element throw it's index i.
# get one input element by its index i.
origin = tensor_to_check.get_float_element(i)
# add delta to it, run op and then get the sum of the result tensor.
# add delta to it, run op and then get the new value of the result tensor.
x_pos = origin + delta
tensor_to_check.set_float_element(i, x_pos)
y_pos = get_output()
# plus delta to this element, run op and get the sum of the result tensor.
# plus delta to this element, run op and get the new value of the result tensor.
x_neg = origin - delta
tensor_to_check.set_float_element(i, x_neg)
y_neg = get_output()
@ -85,15 +85,15 @@ def get_numeric_gradient(op,
Each Operator Kernel has three kinds of Gradient:
- 1. Numeric Gradient
- 2. CPU Operator Gradient
- 3. GPU Operator Gradient(if supported)
1. Numerical gradient
2. CPU kernel gradient
3. GPU kernel gradient (if supported)
Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as the reference value.
The numerical gradient only relies on forward Operator. So we use the numerical gradient as the reference value. And the gradient checking is performed in the following three steps:
- 1. calculate the numeric gradient.
- 2. calculate CPU kernel Gradient with the backward Operator and compare it with the numeric gradient.
- 3. calculate GPU kernel Gradient with the backward Operator and compare it with the numeric gradient.(if support GPU)
1. calculate the numerical gradient
2. calculate CPU kernel gradient with the backward Operator and compare it with the numerical gradient
3. calculate GPU kernel gradient with the backward Operator and compare it with the numeric gradient (if supported)
#### Python Interface
@ -110,8 +110,8 @@ Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as
:param forward_op: used to create backward_op
:param input_vars: numpy value of input variable. The following
computation will use these variables.
:param inputs_to_check: inputs var names that should check gradient.
:param output_name: output name that used to
:param inputs_to_check: the input variable with respect to which to compute the gradient.
:param output_name: The final output variable name.
:param max_relative_error: The relative tolerance parameter.
:param no_grad_set: used when create backward ops
:param only_cpu: only compute and check gradient on cpu kernel.
@ -120,24 +120,24 @@ Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as
```
### How to check if two numpy array is close enough?
if `abs_numeric_grad` is nearly zero, then use abs error for numeric_grad, not relative
if `abs_numerical_grad` is nearly zero, then use abs error for numerical_grad
```python
numeric_grad = ...
numerical_grad = ...
operator_grad = numpy.array(scope.find_var(grad_var_name(name)).get_tensor())
abs_numeric_grad = numpy.abs(numeric_grad)
# if abs_numeric_grad is nearly zero, then use abs error for numeric_grad, not relative
abs_numerical_grad = numpy.abs(numerical_grad)
# if abs_numerical_grad is nearly zero, then use abs error for numeric_grad, not relative
# error.
abs_numeric_grad[abs_numeric_grad < 1e-3] = 1
abs_numerical_grad[abs_numerical_grad < 1e-3] = 1
diff_mat = numpy.abs(abs_numeric_grad - operator_grad) / abs_numeric_grad
diff_mat = numpy.abs(abs_numerical_grad - operator_grad) / abs_numerical_grad
max_diff = numpy.max(diff_mat)
```
#### Notes
1The Input data for auto gradient checker should be reasonable to avoid numeric problem.
The Input data for auto gradient checker should be reasonable to avoid numerical stability problem.
#### Refs:

@ -53,12 +53,12 @@ Let's explain using an example. Suppose that we are going to compose the FC usi
```python
def operator.mul(X1, X2):
O = Var()
paddle.cpp.create_operator("mul", input={X1, Y1], output=O)
paddle.cpp.create_operator("mul", input={X1, Y1}, output=O)
return O
def operator.add(X1, X2):
O = Var()
paddle.cpp.create_operator("add", input={X1, X2], output=O)
paddle.cpp.create_operator("add", input={X1, X2}, output=O)
return O
```

@ -56,7 +56,7 @@ For each parameter, like W and b created by `layer.fc`, marked as double circles
## Block and Graph
The word block and graph are interchangable in the desgin of PaddlePaddle. A [Block[(https://github.com/PaddlePaddle/Paddle/pull/3708) is a metaphore of the code and local variables in a pair of curly braces in programming languages, where operators are like statements or instructions. A graph of operators and variables is a representation of the block.
The word block and graph are interchangable in the desgin of PaddlePaddle. A [Block](https://github.com/PaddlePaddle/Paddle/pull/3708) is a metaphore of the code and local variables in a pair of curly braces in programming languages, where operators are like statements or instructions. A graph of operators and variables is a representation of the block.
A Block keeps operators in an array `BlockDesc::ops`
@ -67,4 +67,4 @@ message BlockDesc {
}
```
in the order that there appear in user programs, like the Python program at the beginning of this article. We can imagine that in `ops`, we have some forward operators, followed by some gradient operators, and then some optimization operators.
in the order that they appear in user programs, like the Python program at the beginning of this article. We can imagine that in `ops`, we have some forward operators, followed by some gradient operators, and then some optimization operators.

@ -1,19 +1,19 @@
# Design Doc: The C++ Class `Parameters`
`Parameters` is a concept we designed in Paddle V2 API. `Parameters` is a container of parameters, and make Paddle can shared parameter between topologies. We described usages of `Parameter` in [api.md](./api.md).
`Parameters` is a concept we designed in PaddlePaddle V2 API. `Parameters` is a container of parameters, which makes PaddlePaddle capable of sharing parameter between topologies. We described usages of `Parameter` in [api.md](./api.md).
We used Python to implement Parameters when designing V2 API before. There are several defects for current implementation:
We used Python to implement Parameters when designing V2 API before. There are several defects for the current implementation:
* We just use `memcpy` to share Parameters between topologies, but this is very inefficient.
* We did not implement share Parameters while training. We just trigger `memcpy` when start training.
* We did not support sharing Parameters while training. We just trigger `memcpy` when start training.
It is necessary that we implement Parameters in CPP side. However, it could be a code refactoring for Paddle, because Paddle was designed for training only one topology before, i.e., each GradientMachine contains its Parameter as a data member. In current Paddle implementation, there are three concepts associated with `Parameters`:
It is necessary that we implement Parameters in CPP side. However, it could result a code refactoring for PaddlePaddle, because PaddlePaddle was designed for training only one topology before, i.e., each GradientMachine contains its Parameter as a data member. In current PaddlePaddle implementation, there are three concepts associated with `Parameters`:
1. `paddle::Parameter`. A `Parameters` is a container for `paddle::Parameter`.
It is evident that we should use `paddle::Parameter` when developing `Parameters`.
However, the `Parameter` class contains many functions and does not have a clear interface.
It contains `create/store Parameter`, `serialize/deserialize`, `optimize(i.e SGD)`, `randomize/zero`.
When we developing `Parameters`, we only use `create/store Parameter` functionality.
We should extract functionalities of Parameter into many classes to clean Paddle CPP implementation.
We should extract functionalities of Parameter into many classes to clean PaddlePaddle CPP implementation.
2. `paddle::GradientMachine` and its sub-classes, e.g., `paddle::MultiGradientMachine`, `paddle::NeuralNetwork`.
We should pass `Parameters` to `paddle::GradientMachine` when `forward/backward` to avoid `memcpy` between topologies.
@ -24,7 +24,7 @@ Also, we should handle multi-GPU/CPU training, because `forward` and `backward`
So `Parameters` should be used by `paddle::ParameterUpdater`, and `paddle::ParameterUpdater` should optimize `Parameters` (by SGD).
The step by step approach for implementation Parameters in Paddle C++ core is listed below. Each step should be a PR and could be merged into Paddle one by one.
The step by step approach for implementation Parameters in PaddlePaddle C++ core is listed below. Each step should be a PR and could be merged into PaddlePaddle one by one.
1. Clean `paddle::Parameter` interface. Extract the functionalities of `paddle::Parameter` to prepare for the implementation of Parameters.

@ -0,0 +1,61 @@
# Design Doc: ProgramDesc
The basic structure of a PaddlePaddle program is some nested blocks, as a C++ or Java program.
As described in [graph.md](./graph.md), the first five lines of the following PaddlePaddle program
```python
x = layer.data("images")
l = layer.data("label")
y = layer.fc(x)
cost = layer.mse(y, l)
optimize(cost)
train(cost, reader=mnist.train())
```
generates, or compiles, a PaddelPaddle program, which is represented by the following protobuf message:
```protobuf
message ProgramDesc {
repeated BlockDesc blocks = 1;
}
message BlockDesc {
required int32 parent = 1;
repeated VarDesc vars = 2;
repeated OpDesc ops = 3;
}
message OpDesc {
AttrDesc attrs = 1;
...
}
message AttrDesc {
required AttrType type = 1;
// index into ProgramDesc::blocks when type==BLOCK
optional int32 block = 2;
...
}
```
When each of the first five lines runs, related Python function, e.g., `layer.fc`, calls C++ InferShape functions. This InferShape function needs to access the properties of VarDesc's accessed by the current OpDesc. These VarDesc's might not be defined in the current block, but in some ancestor blocks. This requires that we can trace the parent of a block.
A nested block is often an attribute of an operator, most likely, an IfElseOp or a WhileOp. In above solution, all blocks are in `ProgramDesc::blocks`, this implicitly assigns a zero-based ID to each block -- the index of the block in `ProgramDesc::blocks`. So that `AttrDesc::block` could be an integer block ID.
With this design, the InferShape function should take the following parameters:
```c++
void InferShape(int current_block,
int current_operator,
ProgramDesc* program // might change VarDesc values.
) {
...
}
```
where
- `current_block` indices into `ProgramDesc::blocks`,
- `current_operator` indices into `BlockDesc::ops`.

@ -52,7 +52,7 @@ Here are valid outputs:
# a mini batch of three data items, each data item is a list (single column).
[([1,1,1],),
([2,2,2],),
([3,3,3],),
([3,3,3],)]
```
Please note that each item inside the list must be a tuple, below is an invalid output:

@ -15,7 +15,7 @@ The goal of refactorizaiton include:
1. Users write Python programs to describe the graphs and run it (locally or remotely).
1. A graph is composed of *variabels* and *operators*.
1. A graph is composed of *variables* and *operators*.
1. The description of graphs must be able to be serialized/deserialized, so it
@ -140,7 +140,7 @@ Compile Time -> IR -> Runtime
* `thrust` has the same API as C++ standard library. Using `transform` can quickly implement a customized elementwise kernel.
* `thrust` has more complex API, like `scan`, `reduce`, `reduce_by_key`.
* Hand-writing `GPUKernel` and `CPU` code
* Do not write `.h`. CPU Kernel should be in `.cc`. CPU kernel should be in `.cu`. (`GCC` cannot compile GPU code.)
* Do not write `.h`. CPU Kernel should be in `.cc`. GPU kernel should be in `.cu`. (`GCC` cannot compile GPU code.)
---
# Operator Register

@ -1,8 +1,8 @@
# Paddle发行规范
# PaddlePaddle发行规范
Paddle使用git-flow branching model做分支管理使用[Semantic Versioning](http://semver.org/)标准表示Paddle版本号。
PaddlePaddle使用git-flow branching model做分支管理使用[Semantic Versioning](http://semver.org/)标准表示PaddlePaddle版本号。
Paddle每次发新的版本遵循以下流程:
PaddlePaddle每次发新的版本遵循以下流程:
1. 从`develop`分支派生出新的分支,分支名为`release/版本号`。例如,`release/0.10.0`
2. 将新分支的版本打上tagtag为`版本号rc.Patch号`。第一个tag为`0.10.0rc1`,第二个为`0.10.0rc2`,依次类推。
@ -27,14 +27,14 @@ Paddle每次发新的版本遵循以下流程:
需要注意的是:
* `release/版本号`分支一旦建立,一般不允许再从`develop`分支合入`release/版本号`。这样保证`release/版本号`分支功能的封闭方便测试人员测试Paddle的行为。
* `release/版本号`分支一旦建立,一般不允许再从`develop`分支合入`release/版本号`。这样保证`release/版本号`分支功能的封闭方便测试人员测试PaddlePaddle的行为。
* 在`release/版本号`分支存在的时候如果有bugfix的行为需要将bugfix的分支同时merge到`master`, `develop`和`release/版本号`这三个分支。
# Paddle 分支规范
# PaddlePaddle 分支规范
Paddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范并适应github的特性做了一些区别。
PaddlePaddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范并适应github的特性做了一些区别。
* Paddle的主版本库遵循[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范。其中:
* PaddlePaddle的主版本库遵循[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范。其中:
* `master`分支为稳定(stable branch)版本分支。每一个`master`分支的版本都是经过单元测试和回归测试的版本。
* `develop`分支为开发(develop branch)版本分支。每一个`develop`分支的版本都经过单元测试,但并没有经过回归测试。
* `release/版本号`分支为每一次Release时建立的临时分支。在这个阶段的代码正在经历回归测试。
@ -42,18 +42,18 @@ Paddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-branch
* 其他用户的fork版本库并不需要严格遵守[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范但所有fork的版本库的所有分支都相当于特性分支。
* 建议开发者fork的版本库使用`develop`分支同步主版本库的`develop`分支
* 建议开发者fork的版本库中再基于`develop`版本fork出自己的功能分支。
* 当功能分支开发完毕后向Paddle的主版本库提交`Pull Reuqest`,进而进行代码评审。
* 当功能分支开发完毕后向PaddlePaddle的主版本库提交`Pull Reuqest`,进而进行代码评审。
* 在评审过程中,开发者修改自己的代码,可以继续在自己的功能分支提交代码。
* BugFix分支也是在开发者自己的fork版本库维护与功能分支不同的是BugFix分支需要分别给主版本库的`master`、`develop`与可能有的`release/版本号`分支,同时提起`Pull Request`。
# Paddle回归测试列表
# PaddlePaddle回归测试列表
本列表说明Paddle发版之前需要测试的功能点。
本列表说明PaddlePaddle发版之前需要测试的功能点。
## Paddle Book中所有章节
## PaddlePaddle Book中所有章节
Paddle每次发版本首先要保证Paddle Book中所有章节功能的正确性。功能的正确性包括验证Paddle目前的`paddle_trainer`训练和纯使用`Python`训练模型正确性。
PaddlePaddle每次发版本首先要保证PaddlePaddle Book中所有章节功能的正确性。功能的正确性包括验证PaddlePaddle目前的`paddle_trainer`训练和纯使用`Python`训练模型正确性。
| | 新手入门章节 | 识别数字 | 图像分类 | 词向量 | 情感分析 | 语意角色标注 | 机器翻译 | 个性化推荐 |
| --- | --- | --- | --- | --- | --- | --- | --- | --- |

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save