export feed/fetch method to Python

revert-4814-Add_sequence_project_op
qijun 8 years ago
parent 517e3c7947
commit c87e060c18

@ -0,0 +1,50 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/scope.h"
#include "paddle/framework/variable.h"
namespace paddle {
namespace framework {
template <typename T>
void SetFeedVariable(const LoDTensor& input, const std::string& var_name,
size_t index) {
// If var_name Variable is not found in GlobalScope, a new variable will
// be created.
Variable* g_feed_value = GetGlobalScope().Var(var_name);
auto& feed_inputs =
*(g_feed_value->GetMutable<std::vector<paddle::framework::LoDTensor>>());
if (index >= feed_inputs.size()) {
feed_inputs.resize(index + 1);
}
// shared data with input tensor
feed_inputs[index].ShareDataWith<T>(input);
// set lod
feed_inputs[index].set_lod(input.lod());
}
LoDTensor& GetFetchVariable(const std::string& var_name, size_t index) {
// If var_name Variable is not found in GlobalScope, a new variable will
// be created.
Variable* g_fetch_value = GetGlobalScope().Var(var_name);
auto& fetch_outputs =
*(g_fetch_value->GetMutable<std::vector<paddle::framework::LoDTensor>>());
PADDLE_ENFORCE_LT(index, fetch_outputs.size());
return fetch_outputs[index];
}
} // namespace framework
} // namespace paddle

@ -77,65 +77,5 @@ class Scope {
framework::Scope& GetGlobalScope();
// template <typename T>
// void SetFeedVariable(const std::vector<T>& input, const Lod& lod,
// const std::vector<int64_t>& dims,
// const std::string& var_name, size_t index) {
// Variable* g_feed_value = GetGlobalScope().Var("var_name");
// // feed variable holds vector<LodTensor>
// auto& feed_inputs =
// *(g_feed_value->GetMutable<
// std::vector<paddle::framework::LoDTensor>>());
// if (index >= feed_inputs.size()) {
// feed_inputs.resize(index);
// }
// // copy tensor
// T* dst = feed_inputs[index].mutable_data<T>(make_ddim(dims),
// platform::CPUPlace());
// memcpy(dst, inputs[i].data(), inputs[i].size() * sizeof(T));
// // copy lod
// feed_inputs[index].set_lod(lod);
// }
template <typename T>
void SetFeedVariable(const LoDTensor& input, const std::string& var_name,
size_t index) {
std::cout << "into SetFeedVariable" << std::endl;
std::cout << var_name << std::endl;
std::cout << index << std::endl;
Variable* g_feed_value = GetGlobalScope().Var(var_name);
auto& feed_inputs =
*(g_feed_value->GetMutable<std::vector<paddle::framework::LoDTensor>>());
if (index >= feed_inputs.size()) {
feed_inputs.resize(index + 1);
}
// shared data with input tensor
feed_inputs[index].ShareDataWith<T>(input);
// set lod
feed_inputs[index].set_lod(input.lod());
}
// template <typename T>
// std::vector<T> GetFetchVariable(const std::string& var_name, size_t index) {
// Variable* g_fetch_value = GetGlobalScope().Var(var_name);
// auto& fetch_outputs =
// *(g_fetch_value->GetMutable<
// std::vector<paddle::framework::LoDTensor>>());
// std::vector<T> result;
// result.resize(fetch_outputs[index].numel());
// memcpy(result.data(), fetch_outputs[i].data<T>(),
// fetch_outputs[i].numel() * sizeof(T));
// }
template <typename T>
LoDTensor& GetFetchVariable(const std::string& var_name, size_t index) {
Variable* g_fetch_value = GetGlobalScope().Var(var_name);
auto& fetch_outputs =
*(g_fetch_value->GetMutable<std::vector<paddle::framework::LoDTensor>>());
std::cout << "into GetFetchVariable" << std::endl;
PADDLE_ENFORCE_LT(index, fetch_outputs.size());
return fetch_outputs[index];
}
} // namespace framework
} // namespace paddle

@ -12,10 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/pybind/protobuf.h"
#include "paddle/pybind/pybind.h"
#include "paddle/framework/backward.h"
#include "paddle/framework/executor.h"
#include "paddle/framework/feed_fetch_method.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/tensor_array.h"
#include "paddle/operators/cond_op.h"
@ -25,7 +25,7 @@ limitations under the License. */
#include "paddle/platform/enforce.h"
#include "paddle/platform/place.h"
#include "paddle/pybind/exception.h"
#include "paddle/pybind/pybind.h"
#include "paddle/pybind/protobuf.h"
#include "paddle/pybind/tensor_py.h"
#include "paddle/string/to_string.h"
@ -403,12 +403,10 @@ All parameter, weight, gradient are variables in Paddle.
m.def("unique_integer", UniqueIntegerGenerator);
m.def("is_compile_gpu", IsCompileGPU);
m.def("set_feed_variable", SetFeedVariable<float>);
// m.def("set_feed_variable", SetFeedVariable<double>);
// m.def("set_feed_variable", SetFeedVariable<int>);
m.def("get_fetch_variable", GetFetchVariable<float>);
// m.def("get_fetch_variable", GetFetchVariable<double>);
// m.def("get_fetch_variable", GetFetchVariable<int>);
m.def("set_feed_variable_float", framework::SetFeedVariable<float>);
m.def("set_feed_variable_double", framework::SetFeedVariable<double>);
m.def("set_feed_variable_int", framework::SetFeedVariable<int>);
m.def("get_fetch_variable", framework::GetFetchVariable);
BindProgramDesc(m);
BindBlockDesc(m);

@ -2,49 +2,29 @@ import paddle.v2.framework.core as core
import unittest
import numpy as np
# class TestFeedFetch(unittest.TestCase):
# def test_feed_fetch(self):
# place = core.CPUPlace()
# input_tensor = core.LoDTensor([[0, 2, 4]])
# input_tensor.set_dims([4, 4, 6])
# input_tensor.alloc_int(place)
# input_array = np.array(input_tensor)
# input_array[0, 0, 0] = 3
# input_array[3, 3, 5] = 10
# input_tensor.set(input_array, place)
# core.set_feed_variable(input_tensor, "feed", 0)
# output_tensor = core.get_fetch_variable("feed", 0)
# print type(output_tensor)
# output_lod = output_tensor.lod()
# print type(output_lod)
# print output_lod[0]
# print output_lod[0][0]
# print output_lod[0][1]
# print output_lod[0][2]
# # self.assertEqual(0, output_lod[0][0])
# # self.assertEqual(0, output_lod[0][0])
# # self.assertEqual(2, output_lod[0][1])
# # self.assertEqual(4, output_lod[0][2])
# # output_array = np.array(output_tensor)
# # self.assertEqual(3, output_array[0, 0, 0])
# # self.assertEqual(10, output_array[3, 3, 5]);
class TestFeedFetch(unittest.TestCase):
def test_feed_fetch(self):
place = core.CPUPlace()
input_tensor = core.LoDTensor([[0, 2, 4]])
input_tensor.set_dims([4, 4, 6])
input_tensor.alloc_float(place)
input_array = np.array(input_tensor)
input_array = np.ones((4, 4, 6)).astype("float32")
input_array[0, 0, 0] = 3
input_array[3, 3, 5] = 10
input_tensor = core.LoDTensor([[0, 2, 4]])
input_tensor.set(input_array, place)
core.set_feed_variable_float(input_tensor, "feed", 0)
output_tensor = core.get_fetch_variable("feed", 0)
output_lod = output_tensor.lod()
self.assertEqual(0, output_lod[0][0])
self.assertEqual(2, output_lod[0][1])
self.assertEqual(4, output_lod[0][2])
output_array = np.array(output_tensor)
self.assertEqual(3, output_array[0, 0, 0])
self.assertEqual(10, output_array[3, 3, 5])
if __name__ == "__main__":
unittest.main()

Loading…
Cancel
Save