Merge pull request #5501 from reyoung/feature/lod_array_length
Add `lod_array_length` operatormobile_baidu
commit
c88f98cf9e
@ -0,0 +1,71 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/framework/lod_tensor_array.h"
|
||||||
|
#include "paddle/framework/op_registry.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
class LoDArrayLengthOp : public framework::OperatorBase {
|
||||||
|
public:
|
||||||
|
LoDArrayLengthOp(const std::string &type,
|
||||||
|
const framework::VariableNameMap &inputs,
|
||||||
|
const framework::VariableNameMap &outputs,
|
||||||
|
const framework::AttributeMap &attrs)
|
||||||
|
: OperatorBase(type, inputs, outputs, attrs) {}
|
||||||
|
void Run(const framework::Scope &scope,
|
||||||
|
const platform::DeviceContext &dev_ctx) const override {
|
||||||
|
auto &x = scope.FindVar(Input("X"))->Get<framework::LoDTensorArray>();
|
||||||
|
auto &out =
|
||||||
|
*scope.FindVar(Output("Out"))->GetMutable<framework::LoDTensor>();
|
||||||
|
out.Resize({1});
|
||||||
|
auto cpu = platform::CPUPlace();
|
||||||
|
*out.mutable_data<int64_t>(cpu) = static_cast<int64_t>(x.size());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class LoDArrayLengthProtoMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
LoDArrayLengthProtoMaker(framework::OpProto *proto,
|
||||||
|
framework::OpAttrChecker *op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput("X", "(LoDTensorArray) The input tensor array.");
|
||||||
|
AddOutput("Out", "(Tensor) 1x1 CPU Tensor of length, int64_t");
|
||||||
|
AddComment(R"DOC(Get the length of lod tensor array
|
||||||
|
|
||||||
|
Out = len(X)
|
||||||
|
|
||||||
|
NOTE: The output is a CPU Tensor since the control variable should be only in
|
||||||
|
CPU and the length of LoDTensorArray should be used as control variables.
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class LoDArrayLengthInferShape : public framework::InferShapeBase {
|
||||||
|
public:
|
||||||
|
void operator()(framework::InferShapeContext *context) const override {
|
||||||
|
PADDLE_ENFORCE(context->HasInput("X"));
|
||||||
|
PADDLE_ENFORCE(context->HasOutput("Out"));
|
||||||
|
context->SetOutputDim("Out", {1});
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OPERATOR(lod_array_length, ops::LoDArrayLengthOp,
|
||||||
|
ops::LoDArrayLengthInferShape, ops::LoDArrayLengthProtoMaker,
|
||||||
|
paddle::framework::EmptyGradOpMaker);
|
||||||
@ -0,0 +1,21 @@
|
|||||||
|
import unittest
|
||||||
|
import paddle.v2.framework.layers as layers
|
||||||
|
from paddle.v2.framework.executor import Executor
|
||||||
|
import paddle.v2.framework.core as core
|
||||||
|
import numpy
|
||||||
|
|
||||||
|
|
||||||
|
class TestLoDArrayLength(unittest.TestCase):
|
||||||
|
def test_array_length(self):
|
||||||
|
tmp = layers.zeros(shape=[10], dtype='int32')
|
||||||
|
i = layers.fill_constant(shape=[1], dtype='int64', value=10)
|
||||||
|
arr = layers.array_write(tmp, i=i)
|
||||||
|
arr_len = layers.array_length(arr)
|
||||||
|
cpu = core.CPUPlace()
|
||||||
|
exe = Executor(cpu)
|
||||||
|
result = numpy.array(exe.run(fetch_list=[arr_len])[0])
|
||||||
|
self.assertEqual(11, result[0])
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
||||||
Loading…
Reference in new issue