Unittests concurrency (#8666)
Python Unit Tests for CSP * Simple Channel Send and Receive test * Daisy Chain test with 100 channels/Go opsoptimizer
parent
9e1ec8c919
commit
c9dd4e57f1
@ -1,37 +0,0 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import paddle.fluid as fluid
|
||||
|
||||
|
||||
class TestCSPFramework(unittest.TestCase):
|
||||
def daisy_chain(self):
|
||||
n = 10000
|
||||
leftmost = fluid.make_channel(dtype=int)
|
||||
right = leftmost
|
||||
left = leftmost
|
||||
with fluid.While(steps=n):
|
||||
right = fluid.make_channel(dtype=int)
|
||||
with fluid.go():
|
||||
fluid.send(left, 1 + fluid.recv(right))
|
||||
left = right
|
||||
|
||||
with fluid.go():
|
||||
fluid.send(right, 1)
|
||||
fluid.Print(fluid.recv(leftmost))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -0,0 +1,100 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid import framework, unique_name
|
||||
from paddle.fluid.executor import Executor
|
||||
from paddle.fluid.layers import fill_constant
|
||||
|
||||
|
||||
class TestRoutineOp(unittest.TestCase):
|
||||
def test_simple_routine(self):
|
||||
ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
|
||||
|
||||
# Create LOD_TENSOR<INT64> and put it into the scope. This placeholder
|
||||
# variable will be filled in and returned by fluid.channel_recv
|
||||
result = self._create_tensor('return_value',
|
||||
core.VarDesc.VarType.LOD_TENSOR,
|
||||
core.VarDesc.VarType.INT64)
|
||||
|
||||
with fluid.Go():
|
||||
input_value = fill_constant(
|
||||
shape=[1], dtype=core.VarDesc.VarType.FP64, value=1234)
|
||||
fluid.channel_send(ch, input_value)
|
||||
|
||||
result, status = fluid.channel_recv(ch, result)
|
||||
fluid.channel_close(ch)
|
||||
|
||||
cpu = core.CPUPlace()
|
||||
exe = Executor(cpu)
|
||||
|
||||
outs = exe.run(fetch_list=[result])
|
||||
self.assertEqual(outs[0], 1234)
|
||||
|
||||
def test_daisy_chain(self):
|
||||
'''
|
||||
Mimics classic Daisy-chain test: https://talks.golang.org/2012/concurrency.slide#39
|
||||
'''
|
||||
n = 100
|
||||
|
||||
leftmost = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
|
||||
left = leftmost
|
||||
|
||||
# TODO(thuan): Use fluid.While() after scope capture is implemented.
|
||||
# https://github.com/PaddlePaddle/Paddle/issues/8502
|
||||
for i in range(n):
|
||||
right = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR)
|
||||
with fluid.Go():
|
||||
one_tensor = self._create_one_dim_tensor(1)
|
||||
result = self._create_tensor('return_value',
|
||||
core.VarDesc.VarType.LOD_TENSOR,
|
||||
core.VarDesc.VarType.INT64)
|
||||
|
||||
result, status = fluid.channel_recv(right, result)
|
||||
one_added = fluid.layers.elementwise_add(x=one_tensor, y=result)
|
||||
fluid.channel_send(left, one_added)
|
||||
left = right
|
||||
|
||||
# Trigger the channel propagation by sending a "1" to rightmost channel
|
||||
with fluid.Go():
|
||||
one_tensor = self._create_one_dim_tensor(1)
|
||||
fluid.channel_send(right, one_tensor)
|
||||
|
||||
leftmost_result = self._create_tensor('return_value',
|
||||
core.VarDesc.VarType.LOD_TENSOR,
|
||||
core.VarDesc.VarType.INT64)
|
||||
leftmost_result, status = fluid.channel_recv(leftmost, leftmost_result)
|
||||
|
||||
cpu = core.CPUPlace()
|
||||
exe = Executor(cpu)
|
||||
leftmost_data = exe.run(fetch_list=[leftmost_result])
|
||||
|
||||
# The leftmost_data should be equal to the number of channels + 1
|
||||
self.assertEqual(leftmost_data[0][0], n + 1)
|
||||
|
||||
def _create_one_dim_tensor(self, value):
|
||||
one_dim_tensor = fill_constant(
|
||||
shape=[1], dtype=core.VarDesc.VarType.INT64, value=value)
|
||||
one_dim_tensor.stop_gradient = True
|
||||
return one_dim_tensor
|
||||
|
||||
def _create_tensor(self, name, type, dtype):
|
||||
return framework.default_main_program().current_block().create_var(
|
||||
name=unique_name.generate(name), type=type, dtype=dtype)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue