Merge pull request #13285 from tensor-tang/refine/ut/lac
add analysis unit test of lac and nerfix-develop-build.sh
commit
ca973139fe
@ -0,0 +1,203 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "paddle/fluid/framework/ir/fc_gru_fuse_pass.h"
|
||||
#include <string>
|
||||
#include "paddle/fluid/framework/lod_tensor.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
namespace ir {
|
||||
|
||||
static void BuildPattern(PDPattern* pattern, const std::string& name_scope,
|
||||
bool with_fc_bias) {
|
||||
PDNode* x = pattern->NewNode(name_scope, "x")
|
||||
->assert_is_op_input("mul")
|
||||
->assert_var_not_persistable();
|
||||
auto* fc_out = patterns::FC(pattern, name_scope, x, with_fc_bias);
|
||||
fc_out->AsIntermediate(); // fc_out is a tmp var, will be removed after fuse.
|
||||
patterns::GRU(pattern, name_scope, fc_out);
|
||||
VLOG(3) << "fc_gru pattern \n" << pattern->DotString();
|
||||
}
|
||||
|
||||
static int BuildFusion(Graph* graph, const std::string& name_scope,
|
||||
Scope* scope, bool with_fc_bias) {
|
||||
GraphPatternDetector gpd;
|
||||
auto* pattern = gpd.mutable_pattern();
|
||||
|
||||
BuildPattern(pattern, name_scope, with_fc_bias);
|
||||
|
||||
// Create New OpDesc
|
||||
auto gru_creater = [&](int gru, int x, int weight_x, int weight_h, int bias,
|
||||
int hidden, int fc_bias) {
|
||||
#define GET_NODE(x) auto* x##_n = graph->RetriveNode(x);
|
||||
GET_NODE(x);
|
||||
GET_NODE(weight_x);
|
||||
GET_NODE(weight_h);
|
||||
GET_NODE(bias);
|
||||
GET_NODE(hidden);
|
||||
GET_NODE(gru);
|
||||
|
||||
OpDesc op_desc;
|
||||
op_desc.SetType("fusion_gru");
|
||||
|
||||
#define NEW_NAME(x) name_scope + "/at." #x ".new"
|
||||
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__##_n->Name()});
|
||||
SET_IN(X, x);
|
||||
SET_IN(WeightX, weight_x);
|
||||
SET_IN(WeightH, weight_h);
|
||||
if (with_fc_bias) {
|
||||
op_desc.SetInput("Bias", {NEW_NAME(bias) + bias_n->Name()});
|
||||
} else {
|
||||
SET_IN(Bias, bias);
|
||||
}
|
||||
#undef SET_IN
|
||||
op_desc.SetInput("H0", {});
|
||||
op_desc.SetOutput("Hidden", {hidden_n->Name()});
|
||||
op_desc.SetAttr("is_reverse", gru_n->Op()->GetAttr("is_reverse"));
|
||||
// TODO(TJ): This should be a option for infer
|
||||
op_desc.SetAttr("use_seq", true);
|
||||
|
||||
#define SET_IMTERMEDIATE_OUT(key) op_desc.SetOutput(#key, {NEW_NAME(key)})
|
||||
SET_IMTERMEDIATE_OUT(ReorderedH0);
|
||||
SET_IMTERMEDIATE_OUT(XX);
|
||||
SET_IMTERMEDIATE_OUT(BatchedInput);
|
||||
SET_IMTERMEDIATE_OUT(BatchedOut);
|
||||
#undef SET_IMTERMEDIATE_OUT
|
||||
|
||||
auto* op = graph->CreateOpNode(&op_desc);
|
||||
PADDLE_ENFORCE(graph->Has(kParamScopeAttr));
|
||||
auto* scope = graph->Get<Scope*>(kParamScopeAttr);
|
||||
PADDLE_ENFORCE(scope);
|
||||
if (with_fc_bias) {
|
||||
// Fusion GRU bias = fcbias + grubias
|
||||
auto* fusion_bias_var = scope->Var(NEW_NAME(bias) + bias_n->Name());
|
||||
auto* out_bias_tensor =
|
||||
fusion_bias_var->GetMutable<framework::LoDTensor>();
|
||||
PADDLE_ENFORCE(fusion_bias_var);
|
||||
GET_NODE(fc_bias);
|
||||
PADDLE_ENFORCE(fc_bias_n);
|
||||
auto* gru_bias_var = scope->FindVar(bias_n->Name());
|
||||
auto* fc_bias_var = scope->FindVar(fc_bias_n->Name());
|
||||
PADDLE_ENFORCE(gru_bias_var);
|
||||
PADDLE_ENFORCE(fc_bias_var);
|
||||
const auto& gru_bias_tenosr = gru_bias_var->Get<framework::LoDTensor>();
|
||||
const auto& fc_bias_tensor = fc_bias_var->Get<framework::LoDTensor>();
|
||||
// new bias = fc bias + gru bias
|
||||
out_bias_tensor->Resize(gru_bias_tenosr.dims());
|
||||
auto* data = out_bias_tensor->mutable_data<float>(platform::CPUPlace());
|
||||
for (int i = 0; i < out_bias_tensor->numel(); i++) {
|
||||
data[i] =
|
||||
fc_bias_tensor.data<float>()[i] + gru_bias_tenosr.data<float>()[i];
|
||||
}
|
||||
}
|
||||
#undef GET_NODE
|
||||
|
||||
#define NEW_IMTERMEDIATE_OUT(key) \
|
||||
scope->Var(NEW_NAME(key))->GetMutable<framework::LoDTensor>()
|
||||
NEW_IMTERMEDIATE_OUT(ReorderedH0);
|
||||
NEW_IMTERMEDIATE_OUT(XX);
|
||||
NEW_IMTERMEDIATE_OUT(BatchedInput);
|
||||
NEW_IMTERMEDIATE_OUT(BatchedOut);
|
||||
#undef NEW_NAME
|
||||
#undef NEW_IMTERMEDIATE_OUT
|
||||
|
||||
IR_NODE_LINK_TO(x_n, op);
|
||||
IR_NODE_LINK_TO(weight_x_n, op);
|
||||
IR_NODE_LINK_TO(weight_h_n, op);
|
||||
IR_NODE_LINK_TO(bias_n, op); // actually should link to new bias if have
|
||||
IR_NODE_LINK_TO(op, hidden_n);
|
||||
// h0?
|
||||
return op;
|
||||
};
|
||||
|
||||
int fusion_count{0};
|
||||
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
|
||||
Graph* g) {
|
||||
#define GET_NODE(name__) \
|
||||
std::string name__##key = name_scope + "/" + #name__; \
|
||||
auto* name__##n = pattern->RetrieveNode(name__##key); \
|
||||
PADDLE_ENFORCE(name__##n); \
|
||||
PADDLE_ENFORCE(subgraph.count(name__##n)); \
|
||||
Node* name__##_n = subgraph.at(name__##n); \
|
||||
int name__ __attribute__((unused)) = name__##_n->id();
|
||||
|
||||
GET_NODE(x);
|
||||
GET_NODE(w); // fc weight
|
||||
GET_NODE(mul);
|
||||
GET_NODE(fc_out);
|
||||
GET_NODE(Weight);
|
||||
GET_NODE(gru);
|
||||
GET_NODE(Bias);
|
||||
GET_NODE(Hidden);
|
||||
// nodes need be removed
|
||||
GET_NODE(BatchGate);
|
||||
GET_NODE(BatchResetHiddenPrev);
|
||||
GET_NODE(BatchHidden);
|
||||
|
||||
if (with_fc_bias) {
|
||||
GET_NODE(mul_out);
|
||||
GET_NODE(fc_bias);
|
||||
GET_NODE(elementwise_add);
|
||||
gru_creater(gru, x, w, Weight, Bias, Hidden, fc_bias);
|
||||
// Remove unneeded nodes.
|
||||
std::unordered_set<const Node*> marked_nodes(
|
||||
{mul_n, gru_n, elementwise_add_n, fc_bias_n, fc_out_n, mul_out_n,
|
||||
BatchGate_n, BatchResetHiddenPrev_n, BatchHidden_n});
|
||||
GraphSafeRemoveNodes(graph, marked_nodes);
|
||||
} else {
|
||||
gru_creater(gru, x, w, Weight, Bias, Hidden, -1);
|
||||
// Remove unneeded nodes.
|
||||
std::unordered_set<const Node*> marked_nodes(
|
||||
{mul_n, gru_n, BatchGate_n, BatchResetHiddenPrev_n, BatchHidden_n});
|
||||
GraphSafeRemoveNodes(graph, marked_nodes);
|
||||
}
|
||||
#undef GET_NODE
|
||||
|
||||
++fusion_count;
|
||||
};
|
||||
|
||||
gpd(graph, handler);
|
||||
|
||||
return fusion_count;
|
||||
}
|
||||
|
||||
std::unique_ptr<ir::Graph> MulGRUFusePass::ApplyImpl(
|
||||
std::unique_ptr<ir::Graph> graph) const {
|
||||
FusePassBase::Init(name_scope_, graph.get());
|
||||
|
||||
int fusion_count = BuildFusion(graph.get(), name_scope_, param_scope(),
|
||||
false /*with_fc_bias*/);
|
||||
|
||||
AddStatis(fusion_count);
|
||||
return graph;
|
||||
}
|
||||
|
||||
std::unique_ptr<ir::Graph> FCGRUFusePass::ApplyImpl(
|
||||
std::unique_ptr<ir::Graph> graph) const {
|
||||
FusePassBase::Init(name_scope_, graph.get());
|
||||
|
||||
int fusion_count = BuildFusion(graph.get(), name_scope_, param_scope(),
|
||||
true /*with_fc_bias*/);
|
||||
|
||||
AddStatis(fusion_count);
|
||||
return graph;
|
||||
}
|
||||
|
||||
} // namespace ir
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
||||
|
||||
REGISTER_PASS(mul_gru_fuse_pass, paddle::framework::ir::MulGRUFusePass);
|
||||
REGISTER_PASS(fc_gru_fuse_pass, paddle::framework::ir::FCGRUFusePass);
|
@ -0,0 +1,50 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
|
||||
#include "paddle/fluid/framework/ir/graph.h"
|
||||
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
namespace ir {
|
||||
|
||||
// The MulGRUFusePass and MulGRUFusePass will fuse to the same FusionGRU op.
|
||||
|
||||
class FCGRUFusePass : public FusePassBase {
|
||||
public:
|
||||
virtual ~FCGRUFusePass() {}
|
||||
|
||||
protected:
|
||||
std::unique_ptr<ir::Graph> ApplyImpl(std::unique_ptr<ir::Graph> graph) const;
|
||||
|
||||
const std::string name_scope_{"fc_gru_fuse"};
|
||||
};
|
||||
|
||||
// Just FC without bias
|
||||
class MulGRUFusePass : public FusePassBase {
|
||||
public:
|
||||
virtual ~MulGRUFusePass() {}
|
||||
|
||||
protected:
|
||||
std::unique_ptr<ir::Graph> ApplyImpl(std::unique_ptr<ir::Graph> graph) const;
|
||||
const std::string name_scope_{"fc_nobias_gru_fuse"};
|
||||
};
|
||||
|
||||
} // namespace ir
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
Loading…
Reference in new issue