Add Conv Transpose BF16 (#30877)
* Add conv transpose BF16 * Share function GetWeightsTz * Adjust to review and fix op compatibility * Add bias to unique handler name * Remove errors related to paddle enforce * Add conv2d_transpose to bf16 list and kernel refatorrevert-31068-fix_conv3d_windows
parent
cbbe127483
commit
caf9d39839
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,204 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid.tests.unittests.op_test import OpTest, convert_float_to_uint16
|
||||
|
||||
from paddle.fluid.tests.unittests.test_conv2d_transpose_op import conv2dtranspose_forward_naive
|
||||
from paddle import enable_static
|
||||
|
||||
|
||||
def conv2d_bias_naive(out, bias):
|
||||
_, out_c, _, _ = out.shape
|
||||
|
||||
for l in range(out_c):
|
||||
out[:, l, :, :] = out[:, l, :, :] + bias[l]
|
||||
return out
|
||||
|
||||
|
||||
@unittest.skipIf(not core.supports_bfloat16(),
|
||||
"place does not support BF16 evaluation")
|
||||
class TestConv2DTransposeBF16MKLDNNOp(OpTest):
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(core.CPUPlace())
|
||||
|
||||
def test_check_grad(self):
|
||||
pass
|
||||
|
||||
def test_check_grad_no_input(self):
|
||||
pass
|
||||
|
||||
def test_check_grad_no_filter(self):
|
||||
pass
|
||||
|
||||
def init_op_type(self):
|
||||
self.data_format = "NCHW"
|
||||
self.op_type = 'conv2d_transpose'
|
||||
self._cpu_only = True
|
||||
|
||||
def init_test_case(self):
|
||||
self.pad = [0, 0]
|
||||
self.fuse_bias = False
|
||||
self.use_mkldnn = True
|
||||
self.is_test = True
|
||||
self.bias_size = None
|
||||
self.fuse_activation = ""
|
||||
self.fuse_alpha = 0.0
|
||||
self.fuse_beta = 0.0
|
||||
self.stride = [1, 1]
|
||||
self.dilations = [1, 1]
|
||||
self.input_size = [2, 3, 5, 5] # NCHW
|
||||
f_c = self.input_size[1]
|
||||
self.filter_size = [f_c, 6, 3, 3]
|
||||
self.groups = 1
|
||||
self.output_size = None
|
||||
self.output_padding = []
|
||||
self.data_format = "NCHW"
|
||||
self.pad = [0, 0]
|
||||
self.padding_algorithm = "EXPLICIT"
|
||||
self.force_fp32_output = False
|
||||
|
||||
def setUp(self):
|
||||
self.input_type = np.uint16
|
||||
self.dtype = np.uint16
|
||||
self.mkldnn_data_type = "bfloat16"
|
||||
self.init_op_type()
|
||||
self.init_test_case()
|
||||
|
||||
input = np.random.random(self.input_size).astype(np.float32)
|
||||
filter = np.random.random(self.filter_size).astype(np.float32)
|
||||
|
||||
self.attrs = {
|
||||
'strides': self.stride,
|
||||
'paddings': self.pad,
|
||||
'padding_algorithm': self.padding_algorithm,
|
||||
'groups': self.groups,
|
||||
'dilations': self.dilations,
|
||||
'is_test': self.is_test,
|
||||
'use_mkldnn': self.use_mkldnn,
|
||||
'mkldnn_data_type': self.mkldnn_data_type,
|
||||
'force_fp32_output': self.force_fp32_output,
|
||||
'data_format': self.data_format,
|
||||
'fuse_activation': self.fuse_activation,
|
||||
'fuse_alpha': self.fuse_alpha,
|
||||
'fuse_beta': self.fuse_beta
|
||||
}
|
||||
if self.output_size is not None:
|
||||
self.attrs['output_size'] = self.output_size
|
||||
|
||||
if len(self.output_padding) > 0:
|
||||
self.attrs['output_padding'] = self.output_padding
|
||||
|
||||
output = conv2dtranspose_forward_naive(input, filter,
|
||||
self.attrs).astype(np.float32)
|
||||
|
||||
if self.input_type is not np.float32:
|
||||
input = convert_float_to_uint16(input)
|
||||
|
||||
self.inputs = {
|
||||
'Input': input.view(self.input_type),
|
||||
'Filter': OpTest.np_dtype_to_fluid_dtype(filter)
|
||||
}
|
||||
|
||||
if self.fuse_bias and self.bias_size is not None:
|
||||
bias = np.random.random(self.bias_size).astype(np.float32)
|
||||
output = conv2d_bias_naive(output, bias)
|
||||
output = output.astype(np.float32)
|
||||
self.attrs['fuse_bias'] = self.fuse_bias
|
||||
self.inputs['Bias'] = OpTest.np_dtype_to_fluid_dtype(bias)
|
||||
|
||||
if self.fuse_activation == "relu":
|
||||
output = np.maximum(output, 0).astype(np.float32)
|
||||
output = output.astype(np.float32)
|
||||
|
||||
if not self.force_fp32_output:
|
||||
output = convert_float_to_uint16(output, self.attrs['data_format'])
|
||||
|
||||
self.outputs['Output'] = output
|
||||
|
||||
|
||||
class TestMKLDNNFuseBias(TestConv2DTransposeBF16MKLDNNOp):
|
||||
def init_test_case(self):
|
||||
super(TestMKLDNNFuseBias, self).init_test_case()
|
||||
self.pad = [1, 1]
|
||||
self.fuse_bias = True
|
||||
self.bias_size = [6]
|
||||
|
||||
|
||||
class TestMKLDNNWithPad(TestConv2DTransposeBF16MKLDNNOp):
|
||||
def init_test_case(self):
|
||||
super(TestMKLDNNWithPad, self).init_test_case()
|
||||
self.pad = [1, 1]
|
||||
self.input_size = [2, 3, 10, 10]
|
||||
|
||||
|
||||
class TestMKLDNNWithStride(TestConv2DTransposeBF16MKLDNNOp):
|
||||
def init_test_case(self):
|
||||
super(TestMKLDNNWithStride, self).init_test_case()
|
||||
self.pad = [1, 1]
|
||||
self.stride = [2, 2]
|
||||
self.input_size = [2, 3, 6, 6] # NCHW
|
||||
|
||||
|
||||
class TestMKLDNNWithAsymPad(TestConv2DTransposeBF16MKLDNNOp):
|
||||
def init_test_case(self):
|
||||
super(TestMKLDNNWithAsymPad, self).init_test_case()
|
||||
self.pad = [0, 0, 1, 2]
|
||||
self.padding_algorithm = "EXPLICIT"
|
||||
|
||||
|
||||
class TestMKLDNNWithSamePad(TestConv2DTransposeBF16MKLDNNOp):
|
||||
def init_test_case(self):
|
||||
super(TestMKLDNNWithSamePad, self).init_test_case()
|
||||
self.pad = [0, 0]
|
||||
self.padding_algorithm = "SAME"
|
||||
|
||||
|
||||
class TestMKLDNNWithValidPad(TestConv2DTransposeBF16MKLDNNOp):
|
||||
def init_test_case(self):
|
||||
super(TestMKLDNNWithValidPad, self).init_test_case()
|
||||
self.pad = [1, 1]
|
||||
self.padding_algorithm = "VALID"
|
||||
|
||||
|
||||
class TestMKLDNNWithValidPad_NHWC(TestMKLDNNWithValidPad):
|
||||
def init_test_case(self):
|
||||
super(TestMKLDNNWithValidPad_NHWC, self).init_test_case()
|
||||
self.data_format = 'NHWC'
|
||||
N, C, H, W = self.input_size
|
||||
self.input_size = [N, H, W, C]
|
||||
|
||||
|
||||
class TestConv2DTransposeMKLDNNWithDilationsExplicitPad(
|
||||
TestConv2DTransposeBF16MKLDNNOp):
|
||||
def init_test_case(self):
|
||||
super(TestConv2DTransposeMKLDNNWithDilationsExplicitPad,
|
||||
self).init_test_case()
|
||||
self.stride = [2, 1]
|
||||
self.dilations = [1, 2]
|
||||
self.groups = 1
|
||||
self.input_size = [4, 3, 8, 7] # NCHW
|
||||
f_c = self.input_size[1]
|
||||
self.filter_size = [f_c, 6, 4, 3]
|
||||
self.pad = [1, 3, 2, 1]
|
||||
self.padding_algorithm = "EXPLICIT"
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
enable_static()
|
||||
unittest.main()
|
Loading…
Reference in new issue