|
|
|
@ -28,8 +28,11 @@ def trilinear_interp_np(input,
|
|
|
|
|
out_size=None,
|
|
|
|
|
actual_shape=None,
|
|
|
|
|
align_corners=True,
|
|
|
|
|
align_mode=0):
|
|
|
|
|
align_mode=0,
|
|
|
|
|
data_layout='NCDHW'):
|
|
|
|
|
"""trilinear interpolation implement in shape [N, C, D, H, W]"""
|
|
|
|
|
if data_layout == "NDHWC":
|
|
|
|
|
input = np.transpose(input, (0, 4, 1, 2, 3)) # NDHWC => NCDHW
|
|
|
|
|
if out_size is not None:
|
|
|
|
|
out_d = out_size[0]
|
|
|
|
|
out_h = out_size[1]
|
|
|
|
@ -114,6 +117,9 @@ def trilinear_interp_np(input,
|
|
|
|
|
w1lambda * input[:, :, d+did, h, w+wid]) + \
|
|
|
|
|
h1lambda * (w2lambda * input[:, :, d+did, h+hid, w] + \
|
|
|
|
|
w1lambda * input[:, :, d+did, h+hid, w+wid]))
|
|
|
|
|
if data_layout == "NDHWC":
|
|
|
|
|
out = np.transpose(out, (0, 2, 3, 4, 1)) # NCDHW => NDHWC
|
|
|
|
|
|
|
|
|
|
return out.astype(input.dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -121,28 +127,42 @@ class TestTrilinearInterpOp(OpTest):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.out_size = None
|
|
|
|
|
self.actual_shape = None
|
|
|
|
|
self.data_layout = 'NCDHW'
|
|
|
|
|
self.init_test_case()
|
|
|
|
|
self.op_type = "trilinear_interp"
|
|
|
|
|
input_np = np.random.random(self.input_shape).astype("float32")
|
|
|
|
|
|
|
|
|
|
if self.data_layout == "NCDHW":
|
|
|
|
|
in_d = self.input_shape[2]
|
|
|
|
|
in_h = self.input_shape[3]
|
|
|
|
|
in_w = self.input_shape[4]
|
|
|
|
|
else:
|
|
|
|
|
in_d = self.input_shape[1]
|
|
|
|
|
in_h = self.input_shape[2]
|
|
|
|
|
in_w = self.input_shape[3]
|
|
|
|
|
|
|
|
|
|
if self.scale > 0:
|
|
|
|
|
out_d = int(self.input_shape[2] * self.scale)
|
|
|
|
|
out_h = int(self.input_shape[3] * self.scale)
|
|
|
|
|
out_w = int(self.input_shape[4] * self.scale)
|
|
|
|
|
out_d = int(in_d * self.scale)
|
|
|
|
|
out_h = int(in_h * self.scale)
|
|
|
|
|
out_w = int(in_w * self.scale)
|
|
|
|
|
else:
|
|
|
|
|
out_d = self.out_d
|
|
|
|
|
out_h = self.out_h
|
|
|
|
|
out_w = self.out_w
|
|
|
|
|
|
|
|
|
|
output_np = trilinear_interp_np(input_np, out_d, out_h, out_w,
|
|
|
|
|
self.out_size, self.actual_shape,
|
|
|
|
|
self.align_corners, self.align_mode)
|
|
|
|
|
output_np = trilinear_interp_np(
|
|
|
|
|
input_np, out_d, out_h, out_w, self.out_size, self.actual_shape,
|
|
|
|
|
self.align_corners, self.align_mode, self.data_layout)
|
|
|
|
|
self.inputs = {'X': input_np}
|
|
|
|
|
if self.out_size is not None:
|
|
|
|
|
self.inputs['OutSize'] = self.out_size
|
|
|
|
|
if self.actual_shape is not None:
|
|
|
|
|
self.inputs['OutSize'] = self.actual_shape
|
|
|
|
|
|
|
|
|
|
# c++ end treat NCDHW the same way as NCHW
|
|
|
|
|
if self.data_layout == 'NCDHW':
|
|
|
|
|
data_layout = 'NCHW'
|
|
|
|
|
else:
|
|
|
|
|
data_layout = 'NHWC'
|
|
|
|
|
self.attrs = {
|
|
|
|
|
'out_d': self.out_d,
|
|
|
|
|
'out_h': self.out_h,
|
|
|
|
@ -150,7 +170,8 @@ class TestTrilinearInterpOp(OpTest):
|
|
|
|
|
'scale': self.scale,
|
|
|
|
|
'interp_method': self.interp_method,
|
|
|
|
|
'align_corners': self.align_corners,
|
|
|
|
|
'align_mode': self.align_mode
|
|
|
|
|
'align_mode': self.align_mode,
|
|
|
|
|
'data_layout': data_layout
|
|
|
|
|
}
|
|
|
|
|
self.outputs = {'Out': output_np}
|
|
|
|
|
|
|
|
|
@ -284,6 +305,20 @@ class TestTrilinearInterpActualShape(TestTrilinearInterpOp):
|
|
|
|
|
self.align_mode = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestTrilinearInterpDatalayout(TestTrilinearInterpOp):
|
|
|
|
|
def init_test_case(self):
|
|
|
|
|
self.interp_method = 'trilinear'
|
|
|
|
|
self.input_shape = [2, 4, 4, 4, 3]
|
|
|
|
|
self.out_d = 2
|
|
|
|
|
self.out_h = 2
|
|
|
|
|
self.out_w = 2
|
|
|
|
|
self.scale = 0.
|
|
|
|
|
self.out_size = np.array([3, 3, 3]).astype("int32")
|
|
|
|
|
self.align_corners = True
|
|
|
|
|
self.align_mode = 1
|
|
|
|
|
self.data_layout = "NDHWC"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestTrilinearInterpOpUint8(OpTest):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.out_size = None
|
|
|
|
@ -536,6 +571,7 @@ class TestTrilinearInterp_attr_tensor_Case3(TestTrilinearInterpOp_attr_tensor):
|
|
|
|
|
class TestTrilinearInterpAPI(OpTest):
|
|
|
|
|
def test_case(self):
|
|
|
|
|
x = fluid.layers.data(name="x", shape=[3, 6, 9, 4], dtype="float32")
|
|
|
|
|
y = fluid.layers.data(name="y", shape=[6, 9, 4, 3], dtype="float32")
|
|
|
|
|
|
|
|
|
|
dim = fluid.layers.data(name="dim", shape=[1], dtype="int32")
|
|
|
|
|
shape_tensor = fluid.layers.data(
|
|
|
|
@ -554,7 +590,8 @@ class TestTrilinearInterpAPI(OpTest):
|
|
|
|
|
dtype="float32",
|
|
|
|
|
append_batch_size=False)
|
|
|
|
|
|
|
|
|
|
out1 = fluid.layers.resize_trilinear(x, out_shape=[12, 18, 8])
|
|
|
|
|
out1 = fluid.layers.resize_trilinear(
|
|
|
|
|
y, out_shape=[12, 18, 8], data_format='NDHWC')
|
|
|
|
|
out2 = fluid.layers.resize_trilinear(x, out_shape=[12, dim, 8])
|
|
|
|
|
out3 = fluid.layers.resize_trilinear(x, out_shape=shape_tensor)
|
|
|
|
|
out4 = fluid.layers.resize_trilinear(
|
|
|
|
@ -572,6 +609,7 @@ class TestTrilinearInterpAPI(OpTest):
|
|
|
|
|
results = exe.run(fluid.default_main_program(),
|
|
|
|
|
feed={
|
|
|
|
|
"x": x_data,
|
|
|
|
|
"y": np.transpose(x_data, (0, 2, 3, 4, 1)),
|
|
|
|
|
"dim": dim_data,
|
|
|
|
|
"shape_tensor": shape_data,
|
|
|
|
|
"actual_size": actual_size_data,
|
|
|
|
@ -582,8 +620,20 @@ class TestTrilinearInterpAPI(OpTest):
|
|
|
|
|
|
|
|
|
|
expect_res = trilinear_interp_np(
|
|
|
|
|
x_data, out_d=12, out_h=18, out_w=8, align_mode=1)
|
|
|
|
|
for res in results:
|
|
|
|
|
self.assertTrue(np.allclose(res, expect_res))
|
|
|
|
|
self.assertTrue(
|
|
|
|
|
np.allclose(results[0], np.transpose(expect_res, (0, 2, 3, 4, 1))))
|
|
|
|
|
for i in range(len(results) - 1):
|
|
|
|
|
self.assertTrue(np.allclose(results[i + 1], expect_res))
|
|
|
|
|
|
|
|
|
|
def test_exception(self):
|
|
|
|
|
input = fluid.layers.data(
|
|
|
|
|
name="input", shape=[3, 6, 9, 4], dtype="float32")
|
|
|
|
|
try:
|
|
|
|
|
# for 5-D input, data_format only can be NCDHW or NDHWC
|
|
|
|
|
out = fluid.layers.resize_trilinear(
|
|
|
|
|
input, out_shape=[4, 8, 4], data_format='NHWC')
|
|
|
|
|
except:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|