Python trainer api (#193)
* Python trainer API and demo * Adding missing PaddleAPIPrivate.h * Adding api_train.sh * More comments * Bump up patch version to 0b3avx_docs
parent
46bd5f53e3
commit
cbe734b396
@ -0,0 +1,114 @@
|
|||||||
|
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import itertools
|
||||||
|
import random
|
||||||
|
|
||||||
|
from paddle.trainer.config_parser import parse_config
|
||||||
|
from py_paddle import swig_paddle as api
|
||||||
|
from py_paddle import DataProviderConverter
|
||||||
|
from paddle.trainer.PyDataProvider2 \
|
||||||
|
import integer_value, integer_value_sequence, sparse_binary_vector
|
||||||
|
|
||||||
|
def parse_arguments():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("--train_data",
|
||||||
|
type=str, required=False, help="train data file")
|
||||||
|
parser.add_argument("--test_data", type=str, help="test data file")
|
||||||
|
parser.add_argument("--config",
|
||||||
|
type=str, required=True, help="config file name")
|
||||||
|
parser.add_argument("--dict_file", required=True, help="dictionary file")
|
||||||
|
parser.add_argument("--seq",
|
||||||
|
default=1, type=int,
|
||||||
|
help="whether use sequence training")
|
||||||
|
parser.add_argument("--use_gpu", default=0, type=int,
|
||||||
|
help="whether use GPU for training")
|
||||||
|
parser.add_argument("--trainer_count", default=1, type=int,
|
||||||
|
help="Number of threads for training")
|
||||||
|
parser.add_argument("--num_passes", default=5, type=int,
|
||||||
|
help="Number of training passes")
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
UNK_IDX = 0
|
||||||
|
|
||||||
|
def load_data(file_name, word_dict):
|
||||||
|
with open(file_name, 'r') as f:
|
||||||
|
for line in f:
|
||||||
|
label, comment = line.strip().split('\t')
|
||||||
|
words = comment.split()
|
||||||
|
word_slot = [word_dict.get(w, UNK_IDX) for w in words]
|
||||||
|
yield word_slot, int(label)
|
||||||
|
|
||||||
|
def load_dict(dict_file):
|
||||||
|
word_dict = dict()
|
||||||
|
with open(dict_file, 'r') as f:
|
||||||
|
for i, line in enumerate(f):
|
||||||
|
w = line.strip().split()[0]
|
||||||
|
word_dict[w] = i
|
||||||
|
return word_dict
|
||||||
|
|
||||||
|
def main():
|
||||||
|
options = parse_arguments()
|
||||||
|
api.initPaddle("--use_gpu=%s" % options.use_gpu,
|
||||||
|
"--trainer_count=%s" % options.trainer_count)
|
||||||
|
|
||||||
|
word_dict = load_dict(options.dict_file)
|
||||||
|
train_dataset = list(load_data(options.train_data, word_dict))
|
||||||
|
if options.test_data:
|
||||||
|
test_dataset = list(load_data(options.test_data, word_dict))
|
||||||
|
else:
|
||||||
|
test_dataset = None
|
||||||
|
|
||||||
|
trainer_config = parse_config(options.config,
|
||||||
|
"dict_file=%s" % options.dict_file)
|
||||||
|
# No need to have data provider for trainer
|
||||||
|
trainer_config.ClearField('data_config')
|
||||||
|
trainer_config.ClearField('test_data_config')
|
||||||
|
|
||||||
|
# create a GradientMachine from the model configuratin
|
||||||
|
model = api.GradientMachine.createFromConfigProto(
|
||||||
|
trainer_config.model_config)
|
||||||
|
# create a trainer for the gradient machine
|
||||||
|
trainer = api.Trainer.create(trainer_config, model)
|
||||||
|
|
||||||
|
# create a data converter which converts data to PaddlePaddle
|
||||||
|
# internal format
|
||||||
|
input_types = [
|
||||||
|
integer_value_sequence(len(word_dict)) if options.seq
|
||||||
|
else sparse_binary_vector(len(word_dict)),
|
||||||
|
integer_value(2)]
|
||||||
|
converter = DataProviderConverter(input_types)
|
||||||
|
|
||||||
|
batch_size = trainer_config.opt_config.batch_size
|
||||||
|
trainer.startTrain()
|
||||||
|
for train_pass in xrange(options.num_passes):
|
||||||
|
trainer.startTrainPass()
|
||||||
|
random.shuffle(train_dataset)
|
||||||
|
for pos in xrange(0, len(train_dataset), batch_size):
|
||||||
|
batch = itertools.islice(train_dataset, pos, pos + batch_size)
|
||||||
|
size = min(batch_size, len(train_dataset) - pos)
|
||||||
|
trainer.trainOneDataBatch(size, converter(batch))
|
||||||
|
trainer.finishTrainPass()
|
||||||
|
if test_dataset:
|
||||||
|
trainer.startTestPeriod();
|
||||||
|
for pos in xrange(0, len(test_dataset), batch_size):
|
||||||
|
batch = itertools.islice(test_dataset, pos, pos + batch_size)
|
||||||
|
size = min(batch_size, len(test_dataset) - pos)
|
||||||
|
trainer.testOneDataBatch(size, converter(batch))
|
||||||
|
trainer.finishTestPeriod()
|
||||||
|
trainer.finishTrain()
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
@ -0,0 +1,29 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
set -e
|
||||||
|
|
||||||
|
# Note: if using trainer_config.emb.py, trainer_config.cnn.py
|
||||||
|
# or trainer_config.lstm.py, you need to change --seq to --seq=1
|
||||||
|
# because they are sequence models.
|
||||||
|
python api_train.py \
|
||||||
|
--config=trainer_config.lr.py \
|
||||||
|
--trainer_count=2 \
|
||||||
|
--num_passes=15 \
|
||||||
|
--use_gpu=0 \
|
||||||
|
--seq=0 \
|
||||||
|
--train_data=data/train.txt \
|
||||||
|
--test_data=data/test.txt \
|
||||||
|
--dict_file=data/dict.txt \
|
||||||
|
2>&1 | tee 'train.log'
|
@ -0,0 +1,68 @@
|
|||||||
|
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/gserver/gradientmachines/GradientMachine.h"
|
||||||
|
#include "paddle/trainer/TrainerConfigHelper.h"
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
struct GradientMachinePrivate {
|
||||||
|
std::shared_ptr<paddle::GradientMachine> machine;
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
inline T& cast(void* ptr) {
|
||||||
|
return *(T*)(ptr);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
struct OptimizationConfigPrivate {
|
||||||
|
std::shared_ptr<paddle::TrainerConfigHelper> trainer_config;
|
||||||
|
paddle::OptimizationConfig config;
|
||||||
|
|
||||||
|
const paddle::OptimizationConfig& getConfig() {
|
||||||
|
if (trainer_config != nullptr) {
|
||||||
|
return trainer_config->getOptConfig();
|
||||||
|
} else {
|
||||||
|
return config;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
struct TrainerConfigPrivate {
|
||||||
|
std::shared_ptr<paddle::TrainerConfigHelper> conf;
|
||||||
|
TrainerConfigPrivate() {}
|
||||||
|
};
|
||||||
|
|
||||||
|
struct ModelConfigPrivate {
|
||||||
|
std::shared_ptr<paddle::TrainerConfigHelper> conf;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct ArgumentsPrivate {
|
||||||
|
std::vector<paddle::Argument> outputs;
|
||||||
|
|
||||||
|
inline paddle::Argument& getArg(size_t idx) throw(RangeError) {
|
||||||
|
if (idx < outputs.size()) {
|
||||||
|
return outputs[idx];
|
||||||
|
} else {
|
||||||
|
RangeError e;
|
||||||
|
throw e;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
std::shared_ptr<T>& cast(void* rawPtr) const {
|
||||||
|
return *(std::shared_ptr<T>*)(rawPtr);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
@ -0,0 +1,63 @@
|
|||||||
|
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from paddle.trainer.config_parser import parse_config
|
||||||
|
from paddle.trainer.config_parser import logger
|
||||||
|
from py_paddle import swig_paddle
|
||||||
|
import util
|
||||||
|
|
||||||
|
def main():
|
||||||
|
trainer_config = parse_config(
|
||||||
|
"./testTrainConfig.py", "")
|
||||||
|
model = swig_paddle.GradientMachine.createFromConfigProto(
|
||||||
|
trainer_config.model_config)
|
||||||
|
trainer = swig_paddle.Trainer.create(trainer_config, model)
|
||||||
|
trainer.startTrain()
|
||||||
|
for train_pass in xrange(2):
|
||||||
|
trainer.startTrainPass()
|
||||||
|
num = 0
|
||||||
|
cost = 0
|
||||||
|
while True: # Train one batch
|
||||||
|
batch_size = 1000
|
||||||
|
data, atEnd = util.loadMNISTTrainData(batch_size)
|
||||||
|
if atEnd:
|
||||||
|
break
|
||||||
|
trainer.trainOneDataBatch(batch_size, data)
|
||||||
|
outs = trainer.getForwardOutput()
|
||||||
|
cost += sum(outs[0]['value'])
|
||||||
|
num += batch_size
|
||||||
|
trainer.finishTrainPass()
|
||||||
|
logger.info('train cost=%f' % (cost / num))
|
||||||
|
|
||||||
|
trainer.startTestPeriod()
|
||||||
|
num = 0
|
||||||
|
cost = 0
|
||||||
|
while True: # Test one batch
|
||||||
|
batch_size = 1000
|
||||||
|
data, atEnd = util.loadMNISTTrainData(batch_size)
|
||||||
|
if atEnd:
|
||||||
|
break
|
||||||
|
trainer.testOneDataBatch(batch_size, data)
|
||||||
|
outs = trainer.getForwardOutput()
|
||||||
|
cost += sum(outs[0]['value'])
|
||||||
|
num += batch_size
|
||||||
|
trainer.finishTestPeriod()
|
||||||
|
logger.info('test cost=%f' % (cost / num))
|
||||||
|
|
||||||
|
trainer.finishTrain()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
swig_paddle.initPaddle("--use_gpu=0", "--trainer_count=1")
|
||||||
|
main()
|
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue