We need this operator to assign value to a tensor and the values are stored in the program so that they can be used independent of python.add_depthwiseConv_op_gpu
parent
ea782e38a6
commit
ce233796ea
@ -0,0 +1,82 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/assign_value_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class AssignValueOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
AssignValueOp(const std::string &type,
|
||||
const framework::VariableNameMap &inputs,
|
||||
const framework::VariableNameMap &outputs,
|
||||
const framework::AttributeMap &attrs)
|
||||
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
||||
|
||||
void InferShape(framework::InferShapeContext *ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||
"Output(Out) of AssignValueOp should not be null.");
|
||||
auto shape = ctx->Attrs().Get<std::vector<int>>("shape");
|
||||
ctx->SetOutputDim("Out", framework::make_ddim(shape));
|
||||
}
|
||||
|
||||
protected:
|
||||
framework::OpKernelType GetActualKernelType(
|
||||
const framework::ExecutionContext &ctx) const override {
|
||||
return framework::OpKernelType(
|
||||
framework::proto::DataType(ctx.Attr<int>("dtype")), ctx.GetPlace());
|
||||
}
|
||||
};
|
||||
|
||||
class AssignValueOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
AssignValueOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddOutput("Out", "(Tensor) Output tensor of assign_value operator.");
|
||||
AddAttr<std::vector<int>>("shape",
|
||||
"(vector<int>) "
|
||||
"Shape of values.");
|
||||
AddAttr<int>("dtype", "data type of values")
|
||||
.InEnum({framework::proto::DataType::INT32,
|
||||
framework::proto::DataType::FP32});
|
||||
AddAttr<std::vector<float>>("fp32_values", "store the float values")
|
||||
.SetDefault({});
|
||||
AddAttr<std::vector<int>>("int32_values", "store the int values")
|
||||
.SetDefault({});
|
||||
AddComment(R"DOC(
|
||||
AssignValue operator
|
||||
|
||||
$$Out = values$$
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class AssignValueCPUKernel : public AssignValueKernel<T> {
|
||||
protected:
|
||||
virtual void Copy(void *dst, const void *src, size_t size,
|
||||
const framework::ExecutionContext &ctx) const {
|
||||
std::memcpy(dst, src, size);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OPERATOR(assign_value, ops::AssignValueOp, ops::AssignValueOpMaker);
|
||||
REGISTER_OP_CPU_KERNEL(assign_value, ops::AssignValueCPUKernel<int>,
|
||||
ops::AssignValueCPUKernel<float>)
|
@ -0,0 +1,36 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
Indicesou may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/assign_value_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename T>
|
||||
class AssignValueGPUKernel : public AssignValueKernel<T> {
|
||||
protected:
|
||||
virtual void Copy(void* dst, const void* src, size_t size,
|
||||
const framework::ExecutionContext& ctx) const {
|
||||
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
|
||||
paddle::platform::GpuMemcpyAsync(dst, src, size, cudaMemcpyHostToDevice,
|
||||
dev_ctx.stream());
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_CUDA_KERNEL(assign_value, ops::AssignValueGPUKernel<int>,
|
||||
ops::AssignValueGPUKernel<float>);
|
@ -0,0 +1,55 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
#include "paddle/platform/enforce.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename T>
|
||||
class AssignValueKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
virtual void Compute(const framework::ExecutionContext& ctx) const {
|
||||
auto shape = ctx.Attr<std::vector<int>>("shape");
|
||||
auto* out = ctx.Output<framework::Tensor>("Out");
|
||||
out->Resize(framework::make_ddim(shape));
|
||||
auto* dst = out->mutable_data<T>(ctx.GetPlace());
|
||||
int dtype = ctx.Attr<int>("dtype");
|
||||
const char* value_name = nullptr;
|
||||
switch (dtype) {
|
||||
case framework::proto::DataType::INT32:
|
||||
value_name = "int32_values";
|
||||
break;
|
||||
case framework::proto::DataType::FP32:
|
||||
value_name = "fp32_values";
|
||||
break;
|
||||
default:
|
||||
PADDLE_THROW("Unsupported dtype for assign_value_op: %d", dtype);
|
||||
break;
|
||||
}
|
||||
auto values = ctx.Attr<std::vector<T>>(value_name);
|
||||
Copy(dst, values.data(), sizeof(T) * values.size(), ctx);
|
||||
}
|
||||
|
||||
protected:
|
||||
virtual void Copy(void* dst, const void* src, size_t size,
|
||||
const framework::ExecutionContext& ctx) const = 0;
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,38 @@
|
||||
import paddle.v2.fluid as fluid
|
||||
import paddle.v2.fluid.layers as layers
|
||||
import op_test
|
||||
import numpy
|
||||
import unittest
|
||||
import paddle.v2.fluid.framework as framework
|
||||
|
||||
|
||||
class TestAssignValueOp(op_test.OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "assign_value"
|
||||
x = numpy.random.random(size=(2, 5)).astype(numpy.float32)
|
||||
self.inputs = {}
|
||||
self.outputs = {'Out': x}
|
||||
self.attrs = {
|
||||
'shape': x.shape,
|
||||
'dtype': framework.convert_np_dtype_to_dtype_(x.dtype),
|
||||
'fp32_values': [float(v) for v in x.flat]
|
||||
}
|
||||
|
||||
def test_forward(self):
|
||||
self.check_output()
|
||||
|
||||
def test_assign(self):
|
||||
val = numpy.random.random(size=(2, 5)).astype(numpy.float32)
|
||||
x = layers.create_tensor(dtype="float32")
|
||||
layers.assign(input=val, output=x)
|
||||
exe = fluid.Executor(fluid.CPUPlace())
|
||||
fetched_x = exe.run(fluid.default_main_program(),
|
||||
feed={},
|
||||
fetch_list=[x])
|
||||
self.assertTrue(
|
||||
numpy.allclose(fetched_x, val),
|
||||
"fetch_x=%s val=%s" % (fetched_x, val))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue