Merge pull request #9946 from chengduoZH/feature/add_reduce_op_handle
Feature/add reduce op handlewangkuiyi-patch-2
commit
cec4e6ed0d
@ -0,0 +1,94 @@
|
|||||||
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include <algorithm>
|
||||||
|
#include <map>
|
||||||
|
#include <vector>
|
||||||
|
#include "paddle/fluid/framework/details/reduce_and_gather.h"
|
||||||
|
#include "paddle/fluid/framework/lod_tensor.h"
|
||||||
|
#include "paddle/fluid/framework/selected_rows.h"
|
||||||
|
namespace paddle {
|
||||||
|
namespace framework {
|
||||||
|
namespace details {
|
||||||
|
|
||||||
|
struct ReduceLoDTensor {
|
||||||
|
const std::vector<LoDTensor> &src_tensors_;
|
||||||
|
LoDTensor &dst_tensor_;
|
||||||
|
|
||||||
|
ReduceLoDTensor(const std::vector<LoDTensor> &src, LoDTensor *dst)
|
||||||
|
: src_tensors_(src), dst_tensor_(*dst) {}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
void operator()() const {
|
||||||
|
PADDLE_ENFORCE(!src_tensors_.empty());
|
||||||
|
auto &t0 = src_tensors_[0];
|
||||||
|
PADDLE_ENFORCE_NE(t0.numel(), 0);
|
||||||
|
dst_tensor_.Resize(t0.dims());
|
||||||
|
T *dst = dst_tensor_.mutable_data<T>(platform::CPUPlace());
|
||||||
|
std::copy(t0.data<T>(), t0.data<T>() + t0.numel(), dst);
|
||||||
|
|
||||||
|
for (size_t i = 1; i < src_tensors_.size(); ++i) {
|
||||||
|
auto &t = src_tensors_[i];
|
||||||
|
PADDLE_ENFORCE_EQ(t.dims(), t0.dims());
|
||||||
|
PADDLE_ENFORCE_EQ(t.type(), t0.type());
|
||||||
|
std::transform(t.data<T>(), t.data<T>() + t.numel(), dst, dst,
|
||||||
|
[](T a, T b) -> T { return a + b; });
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
inline void GatherSelectedRows(
|
||||||
|
const std::vector<const SelectedRows *> &src_selecte_rows_,
|
||||||
|
const std::vector<platform::Place> &in_places,
|
||||||
|
const std::unordered_map<platform::Place, platform::DeviceContext *,
|
||||||
|
platform::PlaceHash> &dev_ctxes,
|
||||||
|
const platform::Place &out_place, SelectedRows *dst_selecte_rows) {
|
||||||
|
PADDLE_ENFORCE(!src_selecte_rows_.empty());
|
||||||
|
|
||||||
|
std::vector<Tensor> in_tensors;
|
||||||
|
std::vector<int64_t> out_rows;
|
||||||
|
|
||||||
|
for (auto in_sr_ptr : src_selecte_rows_) {
|
||||||
|
auto &in_sr = *in_sr_ptr;
|
||||||
|
in_tensors.emplace_back(in_sr.value());
|
||||||
|
out_rows.insert(out_rows.end(), in_sr.rows().begin(), in_sr.rows().end());
|
||||||
|
}
|
||||||
|
|
||||||
|
auto &pre_in = src_selecte_rows_[0];
|
||||||
|
|
||||||
|
auto &dst_tensor = *dst_selecte_rows;
|
||||||
|
dst_tensor.set_height(pre_in->height());
|
||||||
|
dst_tensor.set_rows(out_rows);
|
||||||
|
size_t rows = out_rows.size();
|
||||||
|
DDim out_dim = pre_in->GetCompleteDims();
|
||||||
|
out_dim[0] = static_cast<int64_t>(rows);
|
||||||
|
dst_tensor.mutable_value()->Resize(out_dim);
|
||||||
|
dst_tensor.mutable_value()->mutable_data(out_place, pre_in->value().type());
|
||||||
|
Tensor *out_tensor = dst_tensor.mutable_value();
|
||||||
|
|
||||||
|
// copy
|
||||||
|
int s = 0, e = 0;
|
||||||
|
for (size_t j = 0; j < in_tensors.size(); ++j) {
|
||||||
|
e += in_tensors[j].dims()[0];
|
||||||
|
auto sub_out = out_tensor->Slice(s, e);
|
||||||
|
paddle::framework::TensorCopy(in_tensors[j], out_place,
|
||||||
|
*(dev_ctxes.at(in_places[j])), &sub_out);
|
||||||
|
s = e;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace details
|
||||||
|
} // namespace framework
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,161 @@
|
|||||||
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "paddle/fluid/framework/details/reduce_op_handle.h"
|
||||||
|
#include "paddle/fluid/framework/details/reduce_and_gather.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace framework {
|
||||||
|
namespace details {
|
||||||
|
|
||||||
|
void ReduceOpHandle::RunImpl() {
|
||||||
|
// the input and output may have dummy var.
|
||||||
|
std::vector<VarHandle *> in_var_handles = GetValidVarHandles(inputs_);
|
||||||
|
std::vector<VarHandle *> out_var_handles = GetValidVarHandles(outputs_);
|
||||||
|
|
||||||
|
PADDLE_ENFORCE_EQ(
|
||||||
|
in_var_handles.size(), places_.size(),
|
||||||
|
"The number of output should equal to the number of places.");
|
||||||
|
PADDLE_ENFORCE_EQ(out_var_handles.size(), 1,
|
||||||
|
"The number of output should be one.");
|
||||||
|
|
||||||
|
// Wait input done, this Wait is asynchronous operation
|
||||||
|
WaitEvents(in_var_handles);
|
||||||
|
|
||||||
|
// check in the same place
|
||||||
|
auto in_0_handle = in_var_handles[0];
|
||||||
|
auto pre_place = in_0_handle->place_;
|
||||||
|
|
||||||
|
std::vector<platform::Place> in_places;
|
||||||
|
for (auto *in_handle : in_var_handles) {
|
||||||
|
auto in_p = in_handle->place_;
|
||||||
|
PADDLE_ENFORCE_EQ(in_p.which(), pre_place.which(),
|
||||||
|
"Places must be all on CPU or all on CUDA.");
|
||||||
|
in_places.emplace_back(in_p);
|
||||||
|
}
|
||||||
|
|
||||||
|
auto out_var = local_scopes_[out_var_handles[0]->scope_idx_]->FindVar(
|
||||||
|
out_var_handles[0]->name_);
|
||||||
|
|
||||||
|
auto pre_in_var =
|
||||||
|
local_scopes_[in_0_handle->scope_idx_]->FindVar(in_0_handle->name_);
|
||||||
|
|
||||||
|
if (pre_in_var->IsType<framework::SelectedRows>()) {
|
||||||
|
auto &pre_in = pre_in_var->Get<framework::SelectedRows>();
|
||||||
|
std::vector<const SelectedRows *> in_selected_rows;
|
||||||
|
|
||||||
|
for (auto *in_handle : in_var_handles) {
|
||||||
|
auto in_var =
|
||||||
|
local_scopes_.at(in_handle->scope_idx_)->FindVar(in_handle->name_);
|
||||||
|
auto &in_sr = in_var->Get<framework::SelectedRows>();
|
||||||
|
|
||||||
|
PADDLE_ENFORCE_EQ(in_sr.value().type(), pre_in.value().type(),
|
||||||
|
"The type of input is not consistent.");
|
||||||
|
|
||||||
|
in_selected_rows.emplace_back(&in_sr);
|
||||||
|
}
|
||||||
|
auto trg = out_var->GetMutable<framework::SelectedRows>();
|
||||||
|
GatherSelectedRows(in_selected_rows, in_places, dev_ctxes_,
|
||||||
|
out_var_handles[0]->place_, trg);
|
||||||
|
} else {
|
||||||
|
auto pre_in = pre_in_var->Get<framework::LoDTensor>();
|
||||||
|
std::vector<LoDTensor> lod_tensors;
|
||||||
|
|
||||||
|
// can be refined
|
||||||
|
for (auto *in_handle : in_var_handles) {
|
||||||
|
auto in_var =
|
||||||
|
local_scopes_.at(in_handle->scope_idx_)->FindVar(in_handle->name_);
|
||||||
|
auto &in_sr = in_var->Get<framework::LoDTensor>();
|
||||||
|
|
||||||
|
PADDLE_ENFORCE_EQ(in_sr.type(), pre_in.type(),
|
||||||
|
"The type of input is not consistent.");
|
||||||
|
|
||||||
|
lod_tensors.emplace_back(in_sr);
|
||||||
|
}
|
||||||
|
|
||||||
|
auto trg = out_var->GetMutable<framework::LoDTensor>();
|
||||||
|
trg->Resize(pre_in.dims());
|
||||||
|
trg->mutable_data(out_var_handles[0]->place_, pre_in.type());
|
||||||
|
|
||||||
|
if (paddle::platform::is_cpu_place(pre_place)) {
|
||||||
|
ReduceLoDTensor func(lod_tensors, trg);
|
||||||
|
VisitDataType(ToDataType(lod_tensors[0].type()), func);
|
||||||
|
} else if (paddle::platform::is_gpu_place(pre_place)) {
|
||||||
|
#ifdef PADDLE_WITH_CUDA
|
||||||
|
auto out_p = out_var_handles[0]->place_;
|
||||||
|
int root = boost::get<platform::CUDAPlace>(out_p).device;
|
||||||
|
|
||||||
|
std::vector<std::function<void()>> all_reduce_calls;
|
||||||
|
for (size_t i = 0; i < local_scopes_.size(); ++i) {
|
||||||
|
auto &p = in_places[i];
|
||||||
|
auto &lod_tensor = lod_tensors[i];
|
||||||
|
|
||||||
|
int dev_id = boost::get<platform::CUDAPlace>(p).device;
|
||||||
|
auto &nccl_ctx = nccl_ctxs_->at(dev_id);
|
||||||
|
auto stream = nccl_ctx.stream();
|
||||||
|
auto comm = nccl_ctx.comm_;
|
||||||
|
|
||||||
|
void *buffer = const_cast<void *>(lod_tensor.data<void>());
|
||||||
|
void *recvbuffer = nullptr;
|
||||||
|
if (root == dev_id) {
|
||||||
|
recvbuffer = trg->mutable_data(out_var_handles[0]->place_);
|
||||||
|
}
|
||||||
|
|
||||||
|
all_reduce_calls.emplace_back([=] {
|
||||||
|
PADDLE_ENFORCE(platform::dynload::ncclReduce(
|
||||||
|
buffer, recvbuffer, static_cast<size_t>(lod_tensor.numel()),
|
||||||
|
platform::ToNCCLDataType(lod_tensor.type()), ncclSum, root, comm,
|
||||||
|
stream));
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
this->RunAndRecordEvent([&] {
|
||||||
|
platform::NCCLGroupGuard guard;
|
||||||
|
for (auto &call : all_reduce_calls) {
|
||||||
|
call();
|
||||||
|
}
|
||||||
|
});
|
||||||
|
#else
|
||||||
|
PADDLE_THROW("CUDA is not support.");
|
||||||
|
#endif
|
||||||
|
} else {
|
||||||
|
PADDLE_THROW("Place should be CPUPlace or CUDAPlace.");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ReduceOpHandle::WaitEvents(
|
||||||
|
const std::vector<VarHandle *> &in_var_handles) {
|
||||||
|
if (in_var_handles[0]->generated_op_) {
|
||||||
|
for (auto *in : in_var_handles) {
|
||||||
|
in_var_handles[0]->generated_op_->Wait(dev_ctxes_[in->place_]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<VarHandle *> ReduceOpHandle::GetValidVarHandles(
|
||||||
|
const std::vector<VarHandleBase *> &inputs) {
|
||||||
|
std::vector<VarHandle *> in_var_handles;
|
||||||
|
for (auto *in : inputs) {
|
||||||
|
auto *in_handle = dynamic_cast<VarHandle *>(in);
|
||||||
|
if (in_handle) {
|
||||||
|
in_var_handles.push_back(in_handle);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return in_var_handles;
|
||||||
|
}
|
||||||
|
std::string ReduceOpHandle::Name() const { return "reduce"; }
|
||||||
|
} // namespace details
|
||||||
|
} // namespace framework
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,70 @@
|
|||||||
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <map>
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#include "paddle/fluid/framework/details/op_handle_base.h"
|
||||||
|
#include "paddle/fluid/framework/lod_tensor.h"
|
||||||
|
#include "paddle/fluid/framework/scope.h"
|
||||||
|
#include "paddle/fluid/framework/selected_rows.h"
|
||||||
|
#include "paddle/fluid/platform/device_context.h"
|
||||||
|
#ifdef PADDLE_WITH_CUDA
|
||||||
|
#include "paddle/fluid/platform/nccl_helper.h"
|
||||||
|
#endif
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace framework {
|
||||||
|
namespace details {
|
||||||
|
|
||||||
|
struct ReduceOpHandle : public OpHandleBase {
|
||||||
|
const std::vector<Scope *> &local_scopes_;
|
||||||
|
const std::vector<platform::Place> &places_;
|
||||||
|
|
||||||
|
#ifdef PADDLE_WITH_CUDA
|
||||||
|
const platform::NCCLContextMap *nccl_ctxs_;
|
||||||
|
ReduceOpHandle(const std::vector<Scope *> &local_scopes,
|
||||||
|
const std::vector<platform::Place> &places,
|
||||||
|
const platform::NCCLContextMap *nccl_ctxs)
|
||||||
|
: local_scopes_(local_scopes), places_(places), nccl_ctxs_(nccl_ctxs) {
|
||||||
|
if (nccl_ctxs_) {
|
||||||
|
for (auto &p_ctx : nccl_ctxs_->contexts_) {
|
||||||
|
dev_ctxes_[platform::CUDAPlace(p_ctx.first)] = p_ctx.second.ctx_.get();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
ReduceOpHandle(const std::vector<Scope *> &local_scopes,
|
||||||
|
const std::vector<platform::Place> &places)
|
||||||
|
: local_scopes_(local_scopes), places_(places) {}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
std::string Name() const override;
|
||||||
|
|
||||||
|
bool IsMultiDeviceTransfer() override { return false; };
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void RunImpl() override;
|
||||||
|
std::vector<VarHandle *> GetValidVarHandles(
|
||||||
|
const std::vector<VarHandleBase *> &inputs);
|
||||||
|
|
||||||
|
void WaitEvents(const std::vector<VarHandle *> &in_var_handles);
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace details
|
||||||
|
} // namespace framework
|
||||||
|
} // namespace paddle
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue