|
|
|
@ -25,39 +25,28 @@ class ReshapeOp : public framework::OperatorWithKernel {
|
|
|
|
|
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
|
|
|
|
|
|
|
|
|
void InferShape(framework::InferShapeContext *ctx) const override {
|
|
|
|
|
// input check
|
|
|
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
|
|
|
"Input(X) of ReshapeOp should not be null.");
|
|
|
|
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
|
|
|
|
"Output(Out) of ReshapeOp should not be null.");
|
|
|
|
|
|
|
|
|
|
const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
|
|
|
|
|
PADDLE_ENFORCE_EQ(shape.empty(), ctx->HasInput("Shape"),
|
|
|
|
|
"The shape information can only be set by Attr(shape) or "
|
|
|
|
|
"by Input(Shape). Attr(shape) and Input(Shape) cannot be "
|
|
|
|
|
"set at the same time.");
|
|
|
|
|
PADDLE_ENFORCE(!shape.empty(),
|
|
|
|
|
"The shape information must be set by Attr(shape).");
|
|
|
|
|
|
|
|
|
|
std::vector<int64_t> output_shape;
|
|
|
|
|
auto x_dims = ctx->GetInputDim("X");
|
|
|
|
|
bool need_copy_dim = ValidateShape(shape, x_dims, output_shape);
|
|
|
|
|
|
|
|
|
|
if (ctx->HasInput("Shape")) {
|
|
|
|
|
// The shape information in given by Input(Shape).
|
|
|
|
|
auto shape_dims = ctx->GetInputDim("Shape");
|
|
|
|
|
|
|
|
|
|
PADDLE_ENFORCE(shape_dims.size() == 2UL && shape_dims[0] == 1UL,
|
|
|
|
|
"The Input(Label) should be a 2-D tensor with the 1st "
|
|
|
|
|
"dimensions fixed to 1 (a row vector).");
|
|
|
|
|
|
|
|
|
|
// The actual output shape will be set at runtime, here temporially set
|
|
|
|
|
// the shape of output the same as the shape of input.
|
|
|
|
|
if (need_copy_dim) {
|
|
|
|
|
// Some dimensions can only be determined during runtime. Here temporarily
|
|
|
|
|
// set output tensor's shape the same as that of the input tensor.
|
|
|
|
|
ctx->SetOutputDim("Out", x_dims);
|
|
|
|
|
} else {
|
|
|
|
|
// The shape information in given by Attr(shape).
|
|
|
|
|
std::vector<int64_t> output_shape;
|
|
|
|
|
ValidateShape(shape, framework::product(x_dims), output_shape);
|
|
|
|
|
|
|
|
|
|
auto out_dims = framework::make_ddim(output_shape);
|
|
|
|
|
ctx->SetOutputDim("Out", out_dims);
|
|
|
|
|
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
|
|
|
|
|
|
|
|
|
|
// FIXME(caoying): When shape of the output tensor is determined during
|
|
|
|
|
// runtime, LoD information of X will not passed to the output.
|
|
|
|
|
if (shape[0] == x_dims[0]) {
|
|
|
|
|
// Only pass LoD when the first dimension of output and Input(X)
|
|
|
|
|
// are the same.
|
|
|
|
@ -67,41 +56,51 @@ class ReshapeOp : public framework::OperatorWithKernel {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
void ValidateShape(const std::vector<int> &shape, const int64_t in_size,
|
|
|
|
|
bool ValidateShape(const std::vector<int> &shape,
|
|
|
|
|
const framework::DDim &input_dim,
|
|
|
|
|
std::vector<int64_t> &output_shape) const {
|
|
|
|
|
std::vector<size_t> neg_dims_idx;
|
|
|
|
|
const int unknown_index = -1; // only one dimension canbe set to -1, whose
|
|
|
|
|
// size will be automatically infered.
|
|
|
|
|
// only one dimension canbe set to -1, whose size will be automatically
|
|
|
|
|
// infered.
|
|
|
|
|
const int64_t unknown_index = -1;
|
|
|
|
|
const auto in_size = framework::product(input_dim);
|
|
|
|
|
const auto x_rank = input_dim.size();
|
|
|
|
|
|
|
|
|
|
bool need_dim_copy = false;
|
|
|
|
|
std::vector<size_t> neg_dims_idx;
|
|
|
|
|
for (size_t i = 0; i < shape.size(); ++i) {
|
|
|
|
|
PADDLE_ENFORCE(shape[i] > 1 || shape[i] == unknown_index,
|
|
|
|
|
PADDLE_ENFORCE(shape[i] >= 0 || shape[i] == unknown_index,
|
|
|
|
|
"Each input dimension of Attr(shape) must be positive, or "
|
|
|
|
|
"only one input dimension can be -1.");
|
|
|
|
|
if (shape[i] == unknown_index) neg_dims_idx.push_back(i);
|
|
|
|
|
if (shape[i] == unknown_index) {
|
|
|
|
|
neg_dims_idx.push_back(i);
|
|
|
|
|
} else if (shape[i] == 0) {
|
|
|
|
|
PADDLE_ENFORCE_LT(
|
|
|
|
|
i, x_rank,
|
|
|
|
|
"Only dimension less than rank of Input(X) can be set to 0.");
|
|
|
|
|
need_dim_copy = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
PADDLE_ENFORCE_LE(
|
|
|
|
|
neg_dims_idx.size(), 1,
|
|
|
|
|
"Only one input dimension of Attr(shape) may be unknown.");
|
|
|
|
|
|
|
|
|
|
output_shape.resize(shape.size(), 0);
|
|
|
|
|
std::transform(shape.begin(), shape.end(), output_shape.begin(),
|
|
|
|
|
[](int a) { return static_cast<int64_t>(a); });
|
|
|
|
|
|
|
|
|
|
// some dimension can only be determinted during runtime.
|
|
|
|
|
if (need_dim_copy) return need_dim_copy;
|
|
|
|
|
|
|
|
|
|
int64_t inferred_dim = 0;
|
|
|
|
|
if (neg_dims_idx.size()) {
|
|
|
|
|
int64_t capacity = std::accumulate(shape.begin(), shape.end(), 1,
|
|
|
|
|
std::multiplies<int>());
|
|
|
|
|
inferred_dim = in_size / (-capacity);
|
|
|
|
|
PADDLE_ENFORCE_EQ(inferred_dim * (-capacity), in_size,
|
|
|
|
|
"Invalid shape is given.");
|
|
|
|
|
output_shape[neg_dims_idx[0]] = inferred_dim;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
output_shape.resize(shape.size(), 0);
|
|
|
|
|
std::transform(shape.begin(), shape.end(), output_shape.begin(),
|
|
|
|
|
[](int a) { return static_cast<int64_t>(a); });
|
|
|
|
|
if (neg_dims_idx.size()) output_shape[neg_dims_idx[0]] = inferred_dim;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
protected:
|
|
|
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
|
|
|
const framework::ExecutionContext &ctx) const override {
|
|
|
|
|
return framework::OpKernelType(
|
|
|
|
|
framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
|
|
|
|
|
ctx.device_context());
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
@ -110,14 +109,9 @@ class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
|
|
|
ReshapeOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
|
|
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
|
|
|
AddInput("X", "The input tensor of reshape operator.");
|
|
|
|
|
AddInput(
|
|
|
|
|
"Shape",
|
|
|
|
|
"Tensor<int64_t>, a 1-D tensor that provides the shape information.")
|
|
|
|
|
.AsDispensable();
|
|
|
|
|
AddOutput("Out", "The output tensor of reshape operator.");
|
|
|
|
|
AddAttr<std::vector<int>>(
|
|
|
|
|
"shape", "(std::vector<int>) Target shape of reshape operator.")
|
|
|
|
|
.SetDefault(std::vector<int>());
|
|
|
|
|
"shape", "(std::vector<int>) Target shape of reshape operator.");
|
|
|
|
|
AddAttr<bool>("inplace",
|
|
|
|
|
"Change the source tensor's shape without copy memory.")
|
|
|
|
|
.SetDefault(true);
|
|
|
|
@ -153,14 +147,6 @@ class ReshapeGradOp : public framework::OperatorWithKernel {
|
|
|
|
|
"Input(Out@GRAD) shouldn't be null.");
|
|
|
|
|
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
protected:
|
|
|
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
|
|
|
const framework::ExecutionContext &ctx) const override {
|
|
|
|
|
return framework::OpKernelType(
|
|
|
|
|
framework::ToDataType(ctx.Input<framework::Tensor>("X")->type()),
|
|
|
|
|
ctx.device_context());
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
} // namespace operators
|
|
|
|
|