|
|
|
@ -134,7 +134,7 @@ def cross_entropy_layer(net, input, label):
|
|
|
|
|
return cost_name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_backward_net(forward_net):
|
|
|
|
|
def create_backward_net(forward_net):
|
|
|
|
|
net = core.Operator.backward(forward_net, set())
|
|
|
|
|
for input in net.inputs()["all"]:
|
|
|
|
|
var = scope.new_var(input)
|
|
|
|
@ -145,29 +145,29 @@ def get_backward_net(forward_net):
|
|
|
|
|
return net
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def print_inputs_outputs(op):
|
|
|
|
|
def debug_print_op(op):
|
|
|
|
|
print("===============" + op.type() + "==============")
|
|
|
|
|
print("***inputs:***")
|
|
|
|
|
for input in op.inputs()["all"]:
|
|
|
|
|
print input, scope.find_var(input).get_tensor().get_dims()
|
|
|
|
|
print("***outputs:***")
|
|
|
|
|
print("\n***outputs:***")
|
|
|
|
|
for output in op.outputs()["all"]:
|
|
|
|
|
print output, scope.find_var(output).get_tensor().get_dims()
|
|
|
|
|
print("")
|
|
|
|
|
print("")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def set_cost():
|
|
|
|
|
cost_shape = numpy.array(scope.find_var("cross_entropy_3").get_tensor(
|
|
|
|
|
)).shape
|
|
|
|
|
cost_grad = scope.find_var(grad_var_name("cross_entropy_3")).get_tensor()
|
|
|
|
|
def set_cost(cost):
|
|
|
|
|
cost_shape = numpy.array(scope.find_var(cost).get_tensor()).shape
|
|
|
|
|
cost_grad = \
|
|
|
|
|
scope.find_var(grad_var_name(cost)).get_tensor()
|
|
|
|
|
cost_grad.set_dims(cost_shape)
|
|
|
|
|
cost_grad.alloc_float(place)
|
|
|
|
|
cost_grad.set(numpy.ones(cost_shape).astype("float32"), place)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def mean_cost():
|
|
|
|
|
cost_data = numpy.array(scope.find_var("cross_entropy_3").get_tensor())
|
|
|
|
|
def mean_cost(cost):
|
|
|
|
|
cost_data = numpy.array(scope.find_var(cost).get_tensor())
|
|
|
|
|
return cost_data.sum() / len(cost_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -180,23 +180,23 @@ def error_rate(predict, label):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
images = data_layer(name='pixel', dims=[BATCH_SIZE, 784])
|
|
|
|
|
label = data_layer(name='label', dims=[BATCH_SIZE])
|
|
|
|
|
labels = data_layer(name='label', dims=[BATCH_SIZE])
|
|
|
|
|
fc1 = fc_layer(net=forward_network, input=images, size=100, act="sigmoid")
|
|
|
|
|
fc2 = fc_layer(net=forward_network, input=fc1, size=100, act="sigmoid")
|
|
|
|
|
predict = fc_layer(net=forward_network, input=fc2, size=100, act="softmax")
|
|
|
|
|
cost = cross_entropy_layer(net=forward_network, input=predict, label=label)
|
|
|
|
|
cost = cross_entropy_layer(net=forward_network, input=predict, label=labels)
|
|
|
|
|
|
|
|
|
|
forward_network.complete_add_op(True)
|
|
|
|
|
backward_net = get_backward_net(forward_network)
|
|
|
|
|
backward_net = create_backward_net(forward_network)
|
|
|
|
|
optimize_net.complete_add_op(True)
|
|
|
|
|
|
|
|
|
|
print(forward_network)
|
|
|
|
|
print(backward_net)
|
|
|
|
|
print(optimize_net)
|
|
|
|
|
|
|
|
|
|
print_inputs_outputs(forward_network)
|
|
|
|
|
print_inputs_outputs(backward_net)
|
|
|
|
|
print_inputs_outputs(optimize_net)
|
|
|
|
|
debug_print_op(forward_network)
|
|
|
|
|
debug_print_op(backward_net)
|
|
|
|
|
debug_print_op(optimize_net)
|
|
|
|
|
|
|
|
|
|
train_reader = paddle.batch(
|
|
|
|
|
paddle.reader.shuffle(
|
|
|
|
@ -204,19 +204,19 @@ train_reader = paddle.batch(
|
|
|
|
|
batch_size=BATCH_SIZE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test():
|
|
|
|
|
def test(cost_name):
|
|
|
|
|
test_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=128)
|
|
|
|
|
cost = []
|
|
|
|
|
error = []
|
|
|
|
|
for data in test_reader():
|
|
|
|
|
image = numpy.array(map(lambda x: x[0], data)).astype("float32")
|
|
|
|
|
label = numpy.array(map(lambda x: x[1], data)).astype("int32")
|
|
|
|
|
feed_data("pixel", image)
|
|
|
|
|
feed_data("label", label)
|
|
|
|
|
image_data = numpy.array(map(lambda x: x[0], data)).astype("float32")
|
|
|
|
|
label_data = numpy.array(map(lambda x: x[1], data)).astype("int32")
|
|
|
|
|
feed_data(images, image_data)
|
|
|
|
|
feed_data(labels, label_data)
|
|
|
|
|
|
|
|
|
|
forward_network.infer_shape(scope)
|
|
|
|
|
forward_network.run(scope, dev_ctx)
|
|
|
|
|
cost.append(mean_cost())
|
|
|
|
|
cost.append(mean_cost(cost_name))
|
|
|
|
|
error.append(error_rate(predict, "label"))
|
|
|
|
|
print("cost=" + str(sum(cost) / float(len(cost))) + " error_rate=" + str(
|
|
|
|
|
sum(error) / float(len(error))))
|
|
|
|
@ -227,22 +227,20 @@ for pass_id in range(PASS_NUM):
|
|
|
|
|
batch_id = 0
|
|
|
|
|
|
|
|
|
|
for data in train_reader():
|
|
|
|
|
image = numpy.array(map(lambda x: x[0], data)).astype("float32")
|
|
|
|
|
label = numpy.array(map(lambda x: x[1], data)).astype("int32")
|
|
|
|
|
feed_data("pixel", image)
|
|
|
|
|
feed_data("label", label)
|
|
|
|
|
image_data = numpy.array(map(lambda x: x[0], data)).astype("float32")
|
|
|
|
|
label_data = numpy.array(map(lambda x: x[1], data)).astype("int32")
|
|
|
|
|
feed_data(images, image_data)
|
|
|
|
|
feed_data(labels, label_data)
|
|
|
|
|
|
|
|
|
|
forward_network.infer_shape(scope)
|
|
|
|
|
forward_network.run(scope, dev_ctx)
|
|
|
|
|
set_cost()
|
|
|
|
|
set_cost(cost)
|
|
|
|
|
backward_net.infer_shape(scope)
|
|
|
|
|
backward_net.run(scope, dev_ctx)
|
|
|
|
|
|
|
|
|
|
optimize_net.run(scope, dev_ctx)
|
|
|
|
|
if batch_id % 100 == 0:
|
|
|
|
|
print("pass[" + str(pass_id) + "] batch_id[" + str(batch_id) + "]")
|
|
|
|
|
test()
|
|
|
|
|
# print(mean_cost())
|
|
|
|
|
# print(error_rate(predict, "label"))
|
|
|
|
|
test(cost)
|
|
|
|
|
|
|
|
|
|
batch_id = batch_id + 1
|
|
|
|
|