Merge branch 'clang-format' of https://github.com/gangliao/Paddle; branch 'develop' of https://github.com/PaddlePaddle/Paddle into clang-format

cblas_new
liaogang 8 years ago
commit d1e754336e

@ -36,8 +36,8 @@ include(simd)
################################ Configurations ####################################### ################################ Configurations #######################################
option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND}) option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND})
option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND}) option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND})
option(WITH_MKLDNN "Compile PaddlePaddle with mkl-dnn support." ${AVX_FOUND}) option(WITH_MKLDNN "Compile PaddlePaddle with mkl-dnn support." OFF)
option(WITH_MKLML "Compile PaddlePaddle with mklml package." ${AVX_FOUND}) option(WITH_MKLML "Compile PaddlePaddle with mklml package." OFF)
option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON) option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON)
option(WITH_TESTING "Compile PaddlePaddle with unit testing" ON) option(WITH_TESTING "Compile PaddlePaddle with unit testing" ON)
option(WITH_SWIG_PY "Compile PaddlePaddle with inference api" ON) option(WITH_SWIG_PY "Compile PaddlePaddle with inference api" ON)

@ -56,11 +56,14 @@ macro(add_style_check_target TARGET_NAME)
# cpplint code style # cpplint code style
get_filename_component(base_filename ${filename} NAME) get_filename_component(base_filename ${filename} NAME)
set(CUR_GEN ${CMAKE_CURRENT_BINARY_DIR}/${base_filename}.cpplint) set(CUR_GEN ${CMAKE_CURRENT_BINARY_DIR}/${base_filename}.cpplint)
add_custom_command(TARGET ${TARGET_NAME} PRE_BUILD add_custom_command(OUTPUT ${CUR_GEN} PRE_BUILD
COMMAND "${PYTHON_EXECUTABLE}" "${PROJ_ROOT}/paddle/scripts/cpplint.py" COMMAND "${PYTHON_EXECUTABLE}" "${PROJ_ROOT}/paddle/scripts/cpplint.py"
"--filter=${STYLE_FILTER}" "--filter=${STYLE_FILTER}"
"--write-success=${CUR_GEN}" ${filename} "--write-success=${CUR_GEN}" ${filename}
DEPENDS ${filename} ${PROJ_ROOT}/paddle/scripts/cpplint.py
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}) WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
add_custom_target(${base_filename}.cpplint DEPENDS ${CUR_GEN})
add_dependencies(${TARGET_NAME} ${base_filename}.cpplint)
endif() endif()
endforeach() endforeach()
endif() endif()

@ -187,7 +187,13 @@ function(cc_library TARGET_NAME)
endif() endif()
# cpplint code style # cpplint code style
add_style_check_target(${TARGET_NAME} ${cc_library_SRCS}) foreach(source_file ${cc_library_SRCS})
string(REGEX REPLACE "\\.[^.]*$" "" source ${source_file})
if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
list(APPEND cc_library_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
endif()
endforeach()
add_style_check_target(${TARGET_NAME} ${cc_library_SRCS} ${cc_library_HEADERS})
else(cc_library_SRCS) else(cc_library_SRCS)
if (cc_library_DEPS) if (cc_library_DEPS)
@ -239,6 +245,14 @@ function(nv_library TARGET_NAME)
add_dependencies(${TARGET_NAME} ${nv_library_DEPS}) add_dependencies(${TARGET_NAME} ${nv_library_DEPS})
target_link_libraries(${TARGET_NAME} ${nv_library_DEPS}) target_link_libraries(${TARGET_NAME} ${nv_library_DEPS})
endif() endif()
# cpplint code style
foreach(source_file ${nv_library_SRCS})
string(REGEX REPLACE "\\.[^.]*$" "" source ${source_file})
if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
list(APPEND cc_library_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/${source}.h)
endif()
endforeach()
add_style_check_target(${TARGET_NAME} ${nv_library_SRCS} ${nv_library_HEADERS})
else(nv_library_SRCS) else(nv_library_SRCS)
if (nv_library_DEPS) if (nv_library_DEPS)
merge_static_libs(${TARGET_NAME} ${nv_library_DEPS}) merge_static_libs(${TARGET_NAME} ${nv_library_DEPS})

@ -118,7 +118,6 @@ endfunction()
macro(add_unittest_without_exec TARGET_NAME) macro(add_unittest_without_exec TARGET_NAME)
add_executable(${TARGET_NAME} ${ARGN}) add_executable(${TARGET_NAME} ${ARGN})
link_paddle_test(${TARGET_NAME}) link_paddle_test(${TARGET_NAME})
add_style_check_target(${TARGET_NAME} ${ARGN})
endmacro() endmacro()
# add_unittest # add_unittest

@ -12,13 +12,15 @@ cc_test(variable_test SRCS variable_test.cc)
cc_library(scope SRCS scope.cc) cc_library(scope SRCS scope.cc)
cc_test(scope_test SRCS scope_test.cc DEPS scope) cc_test(scope_test SRCS scope_test.cc DEPS scope)
proto_library(attr_type SRCS attr_type.proto) proto_library(attribute_proto SRCS attribute.proto)
proto_library(op_proto SRCS op_proto.proto DEPS attr_type) proto_library(op_proto SRCS op_proto.proto DEPS attribute_proto)
proto_library(op_desc SRCS op_desc.proto DEPS attr_type) proto_library(op_desc SRCS op_desc.proto DEPS attribute_proto)
cc_test(op_proto_test SRCS op_proto_test.cc DEPS op_proto protobuf) cc_test(op_proto_test SRCS op_proto_test.cc DEPS op_proto protobuf)
cc_test(op_desc_test SRCS op_desc_test.cc DEPS op_desc protobuf) cc_test(op_desc_test SRCS op_desc_test.cc DEPS op_desc protobuf)
cc_library(operator SRCS operator.cc DEPS op_desc device_context tensor scope) cc_library(attribute SRCS attribute.cc DEPS op_desc op_proto)
cc_library(operator SRCS operator.cc DEPS op_desc device_context tensor scope attribute)
cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry) cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry)
cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS op_proto operator) cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS op_proto operator)
@ -26,7 +28,7 @@ cc_library(op_registry SRCS op_registry.cc DEPS op_desc grad_op_builder)
cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry) cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry)
cc_test(grad_op_builder_test SRCS grad_op_builder_test.cc DEPS grad_op_builder op_registry add_op) cc_test(grad_op_builder_test SRCS grad_op_builder_test.cc DEPS grad_op_builder op_registry add_op)
py_proto_compile(framework_py_proto SRCS attr_type.proto op_proto.proto op_desc.proto) py_proto_compile(framework_py_proto SRCS attribute.proto op_proto.proto op_desc.proto)
# Generate an empty __init__.py to make framework_py_proto as a valid python module. # Generate an empty __init__.py to make framework_py_proto as a valid python module.
add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(framework_py_proto framework_py_proto_init) add_dependencies(framework_py_proto framework_py_proto_init)

@ -0,0 +1,85 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/attribute.h"
#include <vector>
namespace paddle {
namespace framework {
template <>
AttrType AttrTypeID<int>() {
return INT;
}
template <>
AttrType AttrTypeID<float>() {
return FLOAT;
}
template <>
AttrType AttrTypeID<std::string>() {
return STRING;
}
template <>
AttrType AttrTypeID<std::vector<int>>() {
return INTS;
}
template <>
AttrType AttrTypeID<std::vector<float>>() {
return FLOATS;
}
template <>
AttrType AttrTypeID<std::vector<std::string>>() {
return STRINGS;
}
Attribute GetAttrValue(const AttrDesc& attr_desc) {
switch (attr_desc.type()) {
case paddle::framework::AttrType::INT: {
return attr_desc.i();
}
case paddle::framework::AttrType::FLOAT: {
return attr_desc.f();
}
case paddle::framework::AttrType::STRING: {
return attr_desc.s();
}
case paddle::framework::AttrType::INTS: {
std::vector<int> val(attr_desc.ints_size());
for (int i = 0; i < attr_desc.ints_size(); ++i) {
val[i] = attr_desc.ints(i);
}
return val;
}
case paddle::framework::AttrType::FLOATS: {
std::vector<float> val(attr_desc.floats_size());
for (int i = 0; i < attr_desc.floats_size(); ++i) {
val[i] = attr_desc.floats(i);
}
return val;
}
case paddle::framework::AttrType::STRINGS: {
std::vector<std::string> val(attr_desc.strings_size());
for (int i = 0; i < attr_desc.strings_size(); ++i) {
val[i] = attr_desc.strings(i);
}
return val;
}
}
PADDLE_ENFORCE(false, "Unknown OpDesc::AttrDesc::type !");
return boost::blank();
}
} // namespace framework
} // namespace paddle

@ -1,3 +1,17 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once #pragma once
#include <boost/variant.hpp> #include <boost/variant.hpp>
@ -6,6 +20,9 @@
#include <unordered_map> #include <unordered_map>
#include <unordered_set> #include <unordered_set>
#include <vector> #include <vector>
#include "paddle/framework/attribute.pb.h"
#include "paddle/framework/op_desc.pb.h"
#include "paddle/platform/enforce.h" #include "paddle/platform/enforce.h"
namespace paddle { namespace paddle {
@ -14,13 +31,19 @@ namespace framework {
typedef boost::variant<boost::blank, int, float, std::string, std::vector<int>, typedef boost::variant<boost::blank, int, float, std::string, std::vector<int>,
std::vector<float>, std::vector<std::string>> std::vector<float>, std::vector<std::string>>
Attribute; Attribute;
typedef std::unordered_map<std::string, Attribute> AttributeMap; typedef std::unordered_map<std::string, Attribute> AttributeMap;
template <typename T>
AttrType AttrTypeID();
Attribute GetAttrValue(const AttrDesc& attr_desc);
// check whether a value(attribute) fit a certain limit // check whether a value(attribute) fit a certain limit
template <typename T> template <typename T>
class LargerThanChecker { class LargerThanChecker {
public: public:
LargerThanChecker(T lower_bound) : lower_bound_(lower_bound) {} explicit LargerThanChecker(T lower_bound) : lower_bound_(lower_bound) {}
void operator()(T& value) const { void operator()(T& value) const {
PADDLE_ENFORCE(value > lower_bound_, "larger_than check fail"); PADDLE_ENFORCE(value > lower_bound_, "larger_than check fail");
} }
@ -35,7 +58,8 @@ class LargerThanChecker {
template <typename T> template <typename T>
class DefaultValueSetter { class DefaultValueSetter {
public: public:
DefaultValueSetter(T default_value) : default_value_(default_value) {} explicit DefaultValueSetter(T default_value)
: default_value_(default_value) {}
void operator()(T& value) const { value = default_value_; } void operator()(T& value) const { value = default_value_; }
private: private:
@ -78,7 +102,8 @@ class TypedAttrChecker {
typedef std::function<void(T&)> ValueChecker; typedef std::function<void(T&)> ValueChecker;
public: public:
TypedAttrChecker(const std::string& attr_name) : attr_name_(attr_name) {} explicit TypedAttrChecker(const std::string& attr_name)
: attr_name_(attr_name) {}
TypedAttrChecker& InEnum(const std::unordered_set<T>& range) { TypedAttrChecker& InEnum(const std::unordered_set<T>& range) {
value_checkers_.push_back(EnumInContainer<T>(range)); value_checkers_.push_back(EnumInContainer<T>(range));

@ -59,19 +59,17 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
// If all input gradients of forwarding operator do not need to calculate, // If all input gradients of forwarding operator do not need to calculate,
// just return an NOP. Not return null ptr because NOP does not take // just return an NOP. Not return null ptr because NOP does not take
// too much time for calculation, but it is useful for simplifying logic. // too much time for calculation, but it is useful for simplifying logic.
if (AllInSet(forwardOp.inputs_, OperatorBase::GRAD_VAR_SUFFIX(), if (AllInSet(forwardOp.inputs_, kGradVarSuffix, no_grad_names)) {
no_grad_names)) {
return NOP(); return NOP();
} }
// All output gradients of forwarding operator do not need to calculate. // All output gradients of forwarding operator do not need to calculate.
// Then all input gradients cannot be computed at all, and we put them into // Then all input gradients cannot be computed at all, and we put them into
// `no_grad_names` set. Return an NOP. // `no_grad_names` set. Return an NOP.
if (AllInSet(forwardOp.outputs_, OperatorBase::GRAD_VAR_SUFFIX(), if (AllInSet(forwardOp.outputs_, kGradVarSuffix, no_grad_names)) {
no_grad_names)) {
for (auto& name : forwardOp.inputs_) { for (auto& name : forwardOp.inputs_) {
// Mark all input is not need // Mark all input is not need
no_grad_names.insert(name + OperatorBase::GRAD_VAR_SUFFIX()); no_grad_names.insert(name + kGradVarSuffix);
} }
return NOP(); return NOP();
} }
@ -134,9 +132,9 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
std::shared_ptr<OperatorBase> grad_op = OpRegistry::CreateGradOp(forwardOp); std::shared_ptr<OperatorBase> grad_op = OpRegistry::CreateGradOp(forwardOp);
for (std::string& grad_input : grad_op->inputs_) { for (std::string& grad_input : grad_op->inputs_) {
if (no_grad_names.count(grad_input)) { if (no_grad_names.count(grad_input)) {
std::string prefix = grad_input.substr( std::string prefix =
0, grad_input.size() - OperatorBase::GRAD_VAR_SUFFIX().size()); grad_input.substr(0, grad_input.size() - kGradVarSuffix.size());
grad_input = prefix + OperatorBase::ZERO_VAR_SUFFIX(); grad_input = prefix + kZeroVarSuffix;
// If part of input gradient of that operator is not calculated, fill // If part of input gradient of that operator is not calculated, fill
// zero variables to that input gradient. // zero variables to that input gradient.
@ -147,7 +145,7 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
for (std::string& grad_output : grad_op->outputs_) { for (std::string& grad_output : grad_op->outputs_) {
if (no_grad_names.count(grad_output)) { if (no_grad_names.count(grad_output)) {
grad_output = OperatorBase::EMPTY_VAR_NAME(); grad_output = kEmptyVarName;
} }
} }
@ -168,14 +166,14 @@ std::shared_ptr<OperatorBase> Backward(
std::unordered_set<std::string> no_grad_names; std::unordered_set<std::string> no_grad_names;
no_grad_names.reserve(no_grad_vars.size()); no_grad_names.reserve(no_grad_vars.size());
no_grad_names.insert(OperatorBase::EMPTY_VAR_NAME() + no_grad_names.insert(kEmptyVarName + kGradVarSuffix);
OperatorBase::GRAD_VAR_SUFFIX());
for (auto& name : no_grad_vars) { for (auto& name : no_grad_vars) {
no_grad_names.insert(name + OperatorBase::GRAD_VAR_SUFFIX()); no_grad_names.insert(name + kGradVarSuffix);
} }
size_t uid = 0; size_t uid = 0;
return BackwardRecursive(forwardOp, no_grad_names, uid); return BackwardRecursive(forwardOp, no_grad_names, uid);
} }
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle

@ -78,14 +78,14 @@ class FcOp : public ops::NetOp {
{Output("mul_result")}, {})); {Output("mul_result")}, {}));
auto b_name = Input("b"); auto b_name = Input("b");
std::string before_act = "mul_result"; std::string before_act = "mul_result";
if (b_name != EMPTY_VAR_NAME()) { if (b_name != kEmptyVarName) {
AddOp(OpRegistry::CreateOp("rowwise_add", {Output("mul_result"), b_name}, AddOp(OpRegistry::CreateOp("rowwise_add", {Output("mul_result"), b_name},
{Output("add_result")}, {})); {Output("add_result")}, {}));
before_act = "add_result"; before_act = "add_result";
} else { } else {
auto out_varname = Output("add_result"); auto out_varname = Output("add_result");
if (out_varname != EMPTY_VAR_NAME()) { if (out_varname != kEmptyVarName) {
this->Rename(out_varname, EMPTY_VAR_NAME()); this->Rename(out_varname, kEmptyVarName);
} }
} }
@ -163,13 +163,12 @@ TEST(Backward, simple_op_grad) {
ASSERT_NE(fwd, nullptr); ASSERT_NE(fwd, nullptr);
auto gop = f::OpRegistry::CreateGradOp(*fwd); auto gop = f::OpRegistry::CreateGradOp(*fwd);
ASSERT_EQ(4UL, gop->inputs_.size()); ASSERT_EQ(4UL, gop->inputs_.size());
ASSERT_EQ(f::OperatorBase::EMPTY_VAR_NAME(), gop->inputs_[0]); ASSERT_EQ(f::kEmptyVarName, gop->inputs_[0]);
ASSERT_EQ("rowwise_add_grad", gop->type_); ASSERT_EQ("rowwise_add_grad", gop->type_);
ASSERT_EQ("X" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->outputs_[0]); ASSERT_EQ("X" + f::kGradVarSuffix, gop->outputs_[0]);
ASSERT_EQ("b" + f::OperatorBase::GRAD_VAR_SUFFIX(), gop->outputs_[1]); ASSERT_EQ("b" + f::kGradVarSuffix, gop->outputs_[1]);
ASSERT_EQ("X" + f::OperatorBase::GRAD_VAR_SUFFIX(), ASSERT_EQ("X" + f::kGradVarSuffix, gop->Output("X" + f::kGradVarSuffix));
gop->Output("X" + f::OperatorBase::GRAD_VAR_SUFFIX()));
} }
TEST(Backward, simple_op_not_need_grad) { TEST(Backward, simple_op_not_need_grad) {
@ -177,7 +176,7 @@ TEST(Backward, simple_op_not_need_grad) {
ASSERT_NE(fwd, nullptr); ASSERT_NE(fwd, nullptr);
auto gop = f::Backward(*fwd, {"X"}); auto gop = f::Backward(*fwd, {"X"});
ASSERT_EQ(std::find(gop->outputs_.begin(), gop->outputs_.end(), ASSERT_EQ(std::find(gop->outputs_.begin(), gop->outputs_.end(),
"X" + f::OperatorBase::GRAD_VAR_SUFFIX()), "X" + f::kGradVarSuffix),
gop->outputs_.end()); gop->outputs_.end());
auto no_input_gop = f::Backward(*fwd, {"X", "b"}); auto no_input_gop = f::Backward(*fwd, {"X", "b"});
@ -210,9 +209,9 @@ TEST(Backward, net_fc_backward_normal) {
} }
TEST(Backward, net_fc_backward_not_have_b) { TEST(Backward, net_fc_backward_not_have_b) {
std::shared_ptr<f::OperatorBase> fwd = f::OpRegistry::CreateOp( std::shared_ptr<f::OperatorBase> fwd =
"fc", {"X", "w", f::OperatorBase::EMPTY_VAR_NAME()}, f::OpRegistry::CreateOp("fc", {"X", "w", f::kEmptyVarName},
{"mul_result", "add_result", "tmp"}, {}); {"mul_result", "add_result", "tmp"}, {});
ASSERT_NE(fwd, nullptr); ASSERT_NE(fwd, nullptr);
std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {}); std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
ASSERT_TRUE(gop->IsNetOp()); ASSERT_TRUE(gop->IsNetOp());
@ -242,24 +241,21 @@ TEST(Backward, net_input_of_network_not_need_grad) {
std::unordered_set<std::string> all_output = std::unordered_set<std::string>( std::unordered_set<std::string> all_output = std::unordered_set<std::string>(
bwd_net->outputs_.begin(), bwd_net->outputs_.end()); bwd_net->outputs_.begin(), bwd_net->outputs_.end());
all_output.erase(f::OperatorBase::EMPTY_VAR_NAME()); all_output.erase(f::kEmptyVarName);
for (auto &out : {"W1", "b1", "hidden0", "W2", "b2"}) { for (auto &out : {"W1", "b1", "hidden0", "W2", "b2"}) {
ASSERT_NE(all_output.find(out + f::OperatorBase::GRAD_VAR_SUFFIX()), ASSERT_NE(all_output.find(out + f::kGradVarSuffix), all_output.end());
all_output.end());
} }
// Not Generated X // Not Generated X
ASSERT_EQ(all_output.find("X" + f::OperatorBase::GRAD_VAR_SUFFIX()), ASSERT_EQ(all_output.find("X" + f::kGradVarSuffix), all_output.end());
all_output.end());
ASSERT_EQ(2UL, bwd_net->ops_.size()); ASSERT_EQ(2UL, bwd_net->ops_.size());
ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp()); ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp());
auto first_fc_grad = static_cast<ops::NetOp *>(bwd_net->ops_[1].get()); auto first_fc_grad = static_cast<ops::NetOp *>(bwd_net->ops_[1].get());
ASSERT_EQ(3UL, first_fc_grad->ops_.size()); ASSERT_EQ(3UL, first_fc_grad->ops_.size());
ASSERT_EQ( ASSERT_EQ(f::kEmptyVarName,
f::OperatorBase::EMPTY_VAR_NAME(), first_fc_grad->ops_[2]->Output("A" + f::kGradVarSuffix));
first_fc_grad->ops_[2]->Output("A" + f::OperatorBase::GRAD_VAR_SUFFIX()));
} }
TEST(Backward, net_shared_weight) { TEST(Backward, net_shared_weight) {
@ -311,17 +307,15 @@ TEST(Backward, op_part_of_output_are_not_need) {
ASSERT_EQ(1UL, fill_zero.inputs_.size()); ASSERT_EQ(1UL, fill_zero.inputs_.size());
ASSERT_EQ("Z", fill_zero.inputs_[0]); ASSERT_EQ("Z", fill_zero.inputs_[0]);
ASSERT_EQ(1UL, fill_zero.outputs_.size()); ASSERT_EQ(1UL, fill_zero.outputs_.size());
ASSERT_EQ("Z" + f::OperatorBase::ZERO_VAR_SUFFIX(), fill_zero.outputs_[0]); ASSERT_EQ("Z" + f::kZeroVarSuffix, fill_zero.outputs_[0]);
auto &d_many_out = *net->ops_[1]; auto &d_many_out = *net->ops_[1];
ASSERT_EQ("many_output_op_grad", d_many_out.type_); ASSERT_EQ("many_output_op_grad", d_many_out.type_);
ASSERT_EQ(1UL + 2UL + 2UL, d_many_out.inputs_.size()); // I/O/OG ASSERT_EQ(1UL + 2UL + 2UL, d_many_out.inputs_.size()); // I/O/OG
ASSERT_EQ("Z" + f::OperatorBase::ZERO_VAR_SUFFIX(), ASSERT_EQ("Z" + f::kZeroVarSuffix, d_many_out.Input("z" + f::kGradVarSuffix));
d_many_out.Input("z" + f::OperatorBase::GRAD_VAR_SUFFIX())); ASSERT_EQ("Y" + f::kGradVarSuffix, d_many_out.Input("y" + f::kGradVarSuffix));
ASSERT_EQ("Y" + f::OperatorBase::GRAD_VAR_SUFFIX(), ASSERT_EQ("X" + f::kGradVarSuffix,
d_many_out.Input("y" + f::OperatorBase::GRAD_VAR_SUFFIX())); d_many_out.Output("x" + f::kGradVarSuffix));
ASSERT_EQ("X" + f::OperatorBase::GRAD_VAR_SUFFIX(),
d_many_out.Output("x" + f::OperatorBase::GRAD_VAR_SUFFIX()));
} }
TEST(Backward, op_part_of_input_are_not_need) { TEST(Backward, op_part_of_input_are_not_need) {
@ -331,12 +325,10 @@ TEST(Backward, op_part_of_input_are_not_need) {
ASSERT_EQ(grad_mul.type_, "mul_grad"); ASSERT_EQ(grad_mul.type_, "mul_grad");
ASSERT_EQ(grad_mul.inputs_.size(), 2UL + 1UL + 1UL); ASSERT_EQ(grad_mul.inputs_.size(), 2UL + 1UL + 1UL);
ASSERT_EQ(grad_mul.outputs_.size(), 2UL); ASSERT_EQ(grad_mul.outputs_.size(), 2UL);
ASSERT_EQ(grad_mul.Output("A" + f::OperatorBase::GRAD_VAR_SUFFIX()), ASSERT_EQ(grad_mul.Output("A" + f::kGradVarSuffix), f::kEmptyVarName);
f::OperatorBase::EMPTY_VAR_NAME()); ASSERT_EQ(grad_mul.Output("B" + f::kGradVarSuffix), "b" + f::kGradVarSuffix);
ASSERT_EQ(grad_mul.Output("B" + f::OperatorBase::GRAD_VAR_SUFFIX()), ASSERT_EQ(grad_mul.Input("Out" + f::kGradVarSuffix),
"b" + f::OperatorBase::GRAD_VAR_SUFFIX()); "out" + f::kGradVarSuffix);
ASSERT_EQ(grad_mul.Input("Out" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"out" + f::OperatorBase::GRAD_VAR_SUFFIX());
ASSERT_EQ(grad_mul.Input("A"), "a"); ASSERT_EQ(grad_mul.Input("A"), "a");
ASSERT_EQ(grad_mul.Input("B"), "b"); ASSERT_EQ(grad_mul.Input("B"), "b");
ASSERT_EQ(grad_mul.Input("Out"), "out"); ASSERT_EQ(grad_mul.Input("Out"), "out");
@ -368,23 +360,4 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
EXPECT_EQ(bwd_net->ops_[1]->outputs_.size(), 0UL); EXPECT_EQ(bwd_net->ops_[1]->outputs_.size(), 0UL);
EXPECT_EQ(bwd_net->ops_[2]->inputs_.size(), 0UL); EXPECT_EQ(bwd_net->ops_[2]->inputs_.size(), 0UL);
EXPECT_EQ(bwd_net->ops_[2]->outputs_.size(), 0UL); EXPECT_EQ(bwd_net->ops_[2]->outputs_.size(), 0UL);
/*
EXPECT_EQ(grad_fc.Output("X" + f::OperatorBase::GRAD_VAR_SUFFIX()),
f::OperatorBase::EMPTY_VAR_NAME());
EXPECT_EQ(grad_fc.Output("W" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"w3" + f::OperatorBase::GRAD_VAR_SUFFIX());
EXPECT_EQ(grad_fc.Output("b" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"b3" + f::OperatorBase::GRAD_VAR_SUFFIX());
EXPECT_EQ(grad_fc.Output("mul_result" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"mul_out3" + f::OperatorBase::GRAD_VAR_SUFFIX());
EXPECT_EQ(grad_fc.Input("Out" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"out3" + f::OperatorBase::GRAD_VAR_SUFFIX());
EXPECT_EQ(grad_fc.Input("X"), "out2");
EXPECT_EQ(grad_fc.Input("W"), "w3");
EXPECT_EQ(grad_fc.Input("mul_result"), "mul_out3");
EXPECT_EQ(grad_fc.Input("add_result"), "tmp_out3");
EXPECT_EQ(grad_fc.Input("Out"), "out3");
*/
} }

@ -25,18 +25,15 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace framework { namespace framework {
namespace {
typedef boost::variant<Dim<1>, Dim<2>, Dim<3>, Dim<4>, Dim<5>, Dim<6>, Dim<7>,
Dim<8>, Dim<9>>
DDimVar;
}
/** /**
* \brief A dynamically sized dimension. * \brief A dynamically sized dimension.
* *
* The number of dimensions must be between [1, 9]. * The number of dimensions must be between [1, 9].
*/ */
struct DDim { struct DDim {
typedef boost::variant<Dim<1>, Dim<2>, Dim<3>, Dim<4>, Dim<5>, Dim<6>, Dim<7>,
Dim<8>, Dim<9>>
DDimVar;
DDimVar var; DDimVar var;
DDim() : var(Dim<1>()) {} DDim() : var(Dim<1>()) {}

@ -56,8 +56,7 @@ static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op,
for (const auto& arg : src_arg_list) { for (const auto& arg : src_arg_list) {
std::string src_name = arg.name(); std::string src_name = arg.name();
std::string dst_name = std::string dst_name = is_grad ? src_name + kGradVarSuffix : src_name;
is_grad ? src_name + OperatorBase::GRAD_VAR_SUFFIX() : src_name;
(*dst_op->in_out_idxs_)[dst_name] = idx++; (*dst_op->in_out_idxs_)[dst_name] = idx++;
int src_arg_idx = src_op->in_out_idxs_->at(src_name); int src_arg_idx = src_op->in_out_idxs_->at(src_name);
int src_begin = int src_begin =
@ -65,10 +64,9 @@ static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op,
int src_end = src_format == nullptr ? src_arg_idx + 1 int src_end = src_format == nullptr ? src_arg_idx + 1
: src_format->at(src_arg_idx + 1); : src_format->at(src_arg_idx + 1);
for (int i = src_begin; i < src_end; ++i) { for (int i = src_begin; i < src_end; ++i) {
std::string s = is_grad ? src_inout[i] + OperatorBase::GRAD_VAR_SUFFIX() std::string s =
: arg.ignore_gradient() is_grad ? src_inout[i] + kGradVarSuffix
? OperatorBase::EMPTY_VAR_NAME() : (arg.ignore_gradient() ? kEmptyVarName : src_inout[i]);
: src_inout[i];
dst_inout.emplace_back(s); dst_inout.emplace_back(s);
} }
if (dst_format != nullptr) { if (dst_format != nullptr) {

@ -1,3 +1,17 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once #pragma once
#include "paddle/framework/operator.h" #include "paddle/framework/operator.h"

@ -83,24 +83,21 @@ TEST(GradOpBuilder, MutiInOut) {
EXPECT_EQ(grad_test_op->Input("Out1"), "out1"); EXPECT_EQ(grad_test_op->Input("Out1"), "out1");
EXPECT_EQ(grad_test_op->Inputs("Out2_mult"), EXPECT_EQ(grad_test_op->Inputs("Out2_mult"),
std::vector<std::string>({"out2_1", "out2_2"})); std::vector<std::string>({"out2_1", "out2_2"}));
EXPECT_EQ(grad_test_op->Input("Out1" + f::OperatorBase::GRAD_VAR_SUFFIX()), EXPECT_EQ(grad_test_op->Input("Out1" + f::kGradVarSuffix),
"out1" + f::OperatorBase::GRAD_VAR_SUFFIX()); "out1" + f::kGradVarSuffix);
EXPECT_EQ( EXPECT_EQ(grad_test_op->Inputs("Out2_mult" + f::kGradVarSuffix),
grad_test_op->Inputs("Out2_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()), std::vector<std::string>(
std::vector<std::string>( {"out2_1" + f::kGradVarSuffix, "out2_2" + f::kGradVarSuffix}));
{"out2_1" + f::OperatorBase::GRAD_VAR_SUFFIX(),
"out2_2" + f::OperatorBase::GRAD_VAR_SUFFIX()}));
ASSERT_EQ(grad_test_op->outputs_.size(), 5UL); ASSERT_EQ(grad_test_op->outputs_.size(), 5UL);
EXPECT_EQ(grad_test_op->Output("In1" + f::OperatorBase::GRAD_VAR_SUFFIX()), EXPECT_EQ(grad_test_op->Output("In1" + f::kGradVarSuffix),
"in1" + f::OperatorBase::GRAD_VAR_SUFFIX()); "in1" + f::kGradVarSuffix);
EXPECT_EQ( EXPECT_EQ(grad_test_op->Outputs("In2_mult" + f::kGradVarSuffix),
grad_test_op->Outputs("In2_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()), std::vector<std::string>({"in2_1" + f::kGradVarSuffix,
std::vector<std::string>({"in2_1" + f::OperatorBase::GRAD_VAR_SUFFIX(), "in2_2" + f::kGradVarSuffix,
"in2_2" + f::OperatorBase::GRAD_VAR_SUFFIX(), "in2_3" + f::kGradVarSuffix}));
"in2_3" + f::OperatorBase::GRAD_VAR_SUFFIX()})); EXPECT_EQ(grad_test_op->Output("In3" + f::kGradVarSuffix),
EXPECT_EQ(grad_test_op->Output("In3" + f::OperatorBase::GRAD_VAR_SUFFIX()), "in3" + f::kGradVarSuffix);
"in3" + f::OperatorBase::GRAD_VAR_SUFFIX());
} }
TEST(GradOpBuilder, IOIgnoredInGradient) { TEST(GradOpBuilder, IOIgnoredInGradient) {
@ -116,30 +113,25 @@ TEST(GradOpBuilder, IOIgnoredInGradient) {
ASSERT_EQ(grad_test_op->inputs_.size(), 5UL + 3UL + 3UL); ASSERT_EQ(grad_test_op->inputs_.size(), 5UL + 3UL + 3UL);
EXPECT_EQ(grad_test_op->Input("In1"), "in1"); EXPECT_EQ(grad_test_op->Input("In1"), "in1");
EXPECT_EQ(grad_test_op->Inputs("In2_mult"), EXPECT_EQ(grad_test_op->Inputs("In2_mult"),
std::vector<std::string>({f::OperatorBase::EMPTY_VAR_NAME(), std::vector<std::string>({f::kEmptyVarName, f::kEmptyVarName}));
f::OperatorBase::EMPTY_VAR_NAME()}));
EXPECT_EQ(grad_test_op->Inputs("In3_mult"), EXPECT_EQ(grad_test_op->Inputs("In3_mult"),
std::vector<std::string>({"in3_1", "in3_2"})); std::vector<std::string>({"in3_1", "in3_2"}));
EXPECT_EQ(grad_test_op->Inputs("Out1_mult"), EXPECT_EQ(grad_test_op->Inputs("Out1_mult"),
std::vector<std::string>({"out1_1", "out1_2"})); std::vector<std::string>({"out1_1", "out1_2"}));
EXPECT_EQ(grad_test_op->Input("Out2"), f::OperatorBase::EMPTY_VAR_NAME()); EXPECT_EQ(grad_test_op->Input("Out2"), f::kEmptyVarName);
EXPECT_EQ( EXPECT_EQ(grad_test_op->Inputs("Out1_mult" + f::kGradVarSuffix),
grad_test_op->Inputs("Out1_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()), std::vector<std::string>(
std::vector<std::string>( {"out1_1" + f::kGradVarSuffix, "out1_2" + f::kGradVarSuffix}));
{"out1_1" + f::OperatorBase::GRAD_VAR_SUFFIX(), EXPECT_EQ(grad_test_op->Input("Out2" + f::kGradVarSuffix),
"out1_2" + f::OperatorBase::GRAD_VAR_SUFFIX()})); "out2" + f::kGradVarSuffix);
EXPECT_EQ(grad_test_op->Input("Out2" + f::OperatorBase::GRAD_VAR_SUFFIX()),
"out2" + f::OperatorBase::GRAD_VAR_SUFFIX());
ASSERT_EQ(grad_test_op->outputs_.size(), 5UL); ASSERT_EQ(grad_test_op->outputs_.size(), 5UL);
EXPECT_EQ(grad_test_op->Output("In1" + f::OperatorBase::GRAD_VAR_SUFFIX()), EXPECT_EQ(grad_test_op->Output("In1" + f::kGradVarSuffix),
"in1" + f::OperatorBase::GRAD_VAR_SUFFIX()); "in1" + f::kGradVarSuffix);
EXPECT_EQ( EXPECT_EQ(grad_test_op->Outputs("In2_mult" + f::kGradVarSuffix),
grad_test_op->Outputs("In2_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()), std::vector<std::string>(
std::vector<std::string>({"in2_1" + f::OperatorBase::GRAD_VAR_SUFFIX(), {"in2_1" + f::kGradVarSuffix, "in2_2" + f::kGradVarSuffix}));
"in2_2" + f::OperatorBase::GRAD_VAR_SUFFIX()})); EXPECT_EQ(grad_test_op->Outputs("In3_mult" + f::kGradVarSuffix),
EXPECT_EQ( std::vector<std::string>(
grad_test_op->Outputs("In3_mult" + f::OperatorBase::GRAD_VAR_SUFFIX()), {"in3_1" + f::kGradVarSuffix, "in3_2" + f::kGradVarSuffix}));
std::vector<std::string>({"in3_1" + f::OperatorBase::GRAD_VAR_SUFFIX(),
"in3_2" + f::OperatorBase::GRAD_VAR_SUFFIX()}));
} }

@ -15,7 +15,7 @@ limitations under the License. */
syntax = "proto2"; syntax = "proto2";
package paddle.framework; package paddle.framework;
import "attr_type.proto"; import "attribute.proto";
// AttrDesc is used to describe Attributes of an Operator. It contain's // AttrDesc is used to describe Attributes of an Operator. It contain's
// name, type, and value of Attribute. // name, type, and value of Attribute.

@ -22,7 +22,7 @@ limitations under the License. */
syntax = "proto2"; syntax = "proto2";
package paddle.framework; package paddle.framework;
import "attr_type.proto"; import "attribute.proto";
// Attribute protocol message for 3rd-party language binding. // Attribute protocol message for 3rd-party language binding.
// It will store the Op support what attribute and what type. // It will store the Op support what attribute and what type.

@ -14,37 +14,8 @@ limitations under the License. */
#include <paddle/framework/op_registry.h> #include <paddle/framework/op_registry.h>
namespace paddle { #include <vector>
namespace framework {
template <>
void AttrTypeHelper::SetAttrType<int>(AttrProto* attr) {
attr->set_type(paddle::framework::AttrType::INT);
}
template <>
void AttrTypeHelper::SetAttrType<float>(AttrProto* attr) {
attr->set_type(paddle::framework::AttrType::FLOAT);
}
template <>
void AttrTypeHelper::SetAttrType<std::string>(AttrProto* attr) {
attr->set_type(paddle::framework::AttrType::STRING);
}
template <> namespace paddle {
void AttrTypeHelper::SetAttrType<std::vector<int>>(AttrProto* attr) { namespace framework {} // namespace framework
attr->set_type(paddle::framework::AttrType::INTS);
}
template <>
void AttrTypeHelper::SetAttrType<std::vector<float>>(AttrProto* attr) {
attr->set_type(paddle::framework::AttrType::FLOATS);
}
template <>
void AttrTypeHelper::SetAttrType<std::vector<std::string>>(AttrProto* attr) {
attr->set_type(paddle::framework::AttrType::STRINGS);
}
} // namespace framework
} // namespace paddle } // namespace paddle

@ -19,7 +19,7 @@ limitations under the License. */
#include <type_traits> #include <type_traits>
#include <unordered_map> #include <unordered_map>
#include <unordered_set> #include <unordered_set>
#include "paddle/framework/attr_checker.h" #include "paddle/framework/attribute.h"
#include "paddle/framework/grad_op_builder.h" #include "paddle/framework/grad_op_builder.h"
#include "paddle/framework/op_desc.pb.h" #include "paddle/framework/op_desc.pb.h"
#include "paddle/framework/scope.h" #include "paddle/framework/scope.h"
@ -27,49 +27,6 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace framework { namespace framework {
// helper class to set attribute type
struct AttrTypeHelper {
template <typename T>
static void SetAttrType(AttrProto* attr);
static Attribute GetAttrValue(const AttrDesc& attr_desc) {
switch (attr_desc.type()) {
case paddle::framework::AttrType::INT: {
return attr_desc.i();
}
case paddle::framework::AttrType::FLOAT: {
return attr_desc.f();
}
case paddle::framework::AttrType::STRING: {
return attr_desc.s();
}
case paddle::framework::AttrType::INTS: {
std::vector<int> val(attr_desc.ints_size());
for (int i = 0; i < attr_desc.ints_size(); ++i) {
val[i] = attr_desc.ints(i);
}
return val;
}
case paddle::framework::AttrType::FLOATS: {
std::vector<float> val(attr_desc.floats_size());
for (int i = 0; i < attr_desc.floats_size(); ++i) {
val[i] = attr_desc.floats(i);
}
return val;
}
case paddle::framework::AttrType::STRINGS: {
std::vector<std::string> val(attr_desc.strings_size());
for (int i = 0; i < attr_desc.strings_size(); ++i) {
val[i] = attr_desc.strings(i);
}
return val;
}
}
PADDLE_ENFORCE(false, "Unknown OpDesc::AttrDesc::type !");
return boost::blank();
}
};
// this class not only make proto but also init attribute checkers. // this class not only make proto but also init attribute checkers.
class OpProtoAndCheckerMaker { class OpProtoAndCheckerMaker {
public: public:
@ -136,7 +93,7 @@ class OpProtoAndCheckerMaker {
*attr->mutable_name() = name; *attr->mutable_name() = name;
*attr->mutable_comment() = comment; *attr->mutable_comment() = comment;
attr->set_generated(generated); attr->set_generated(generated);
AttrTypeHelper::SetAttrType<T>(attr); attr->set_type(AttrTypeID<T>());
return op_checker_->AddAttrChecker<T>(name); return op_checker_->AddAttrChecker<T>(name);
} }
@ -297,7 +254,7 @@ class OpRegistry {
AttributeMap attrs; AttributeMap attrs;
for (auto& attr : op_desc.attrs()) { for (auto& attr : op_desc.attrs()) {
attrs[attr.name()] = AttrTypeHelper::GetAttrValue(attr); attrs[attr.name()] = GetAttrValue(attr);
} }
return CreateOp(op_desc.type(), inputs, outputs, attrs); return CreateOp(op_desc.type(), inputs, outputs, attrs);
@ -314,7 +271,7 @@ class OpRegistry {
static std::unordered_map<std::string, OpProto>& protos() { static std::unordered_map<std::string, OpProto>& protos() {
static std::unordered_map<std::string, OpProto> protos_; static std::unordered_map<std::string, OpProto> protos_;
return protos_; return protos_;
}; }
static std::unordered_map<std::string, std::string>& grad_ops() { static std::unordered_map<std::string, std::string>& grad_ops() {
static std::unordered_map<std::string, std::string> grad_ops_; static std::unordered_map<std::string, std::string> grad_ops_;
@ -336,12 +293,12 @@ class OpRegistry {
static std::unordered_map<std::string, OpAttrChecker>& op_checkers() { static std::unordered_map<std::string, OpAttrChecker>& op_checkers() {
static std::unordered_map<std::string, OpAttrChecker> op_checkers_; static std::unordered_map<std::string, OpAttrChecker> op_checkers_;
return op_checkers_; return op_checkers_;
}; }
static void GenerateTempVariableName(OperatorBase* op) { static void GenerateTempVariableName(OperatorBase* op) {
static std::atomic<size_t> gUniqId(0UL); static std::atomic<size_t> gUniqId(0UL);
for (auto& outname : op->outputs_) { for (auto& outname : op->outputs_) {
if (outname == OperatorBase::TMP_VAR_NAME()) { if (outname == kTempVarName) {
outname += op->type_; outname += op->type_;
outname += "@"; outname += "@";
outname += std::to_string(gUniqId.fetch_add(1)); outname += std::to_string(gUniqId.fetch_add(1));
@ -353,7 +310,7 @@ class OpRegistry {
template <typename OpType, typename ProtoMakerType> template <typename OpType, typename ProtoMakerType>
class OpRegisterHelper { class OpRegisterHelper {
public: public:
OpRegisterHelper(const char* op_type) { explicit OpRegisterHelper(const char* op_type) {
OpRegistry::RegisterOp<OpType, ProtoMakerType>(op_type); OpRegistry::RegisterOp<OpType, ProtoMakerType>(op_type);
} }
}; };

@ -20,7 +20,7 @@ limitations under the License. */
#include <unordered_map> #include <unordered_map>
#include <vector> #include <vector>
#include "paddle/framework/attr_checker.h" #include "paddle/framework/attribute.h"
#include "paddle/framework/op_desc.pb.h" #include "paddle/framework/op_desc.pb.h"
#include "paddle/framework/op_proto.pb.h" #include "paddle/framework/op_proto.pb.h"
#include "paddle/framework/scope.h" #include "paddle/framework/scope.h"
@ -32,9 +32,29 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace framework { namespace framework {
/// If a variable is a empty variable, that name will be used.
const std::string kEmptyVarName = "@EMPTY@";
/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
const std::string kTempVarName = "@TEMP@";
/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
const std::string kGradVarSuffix = "@GRAD";
/// Variables with this suffix are supposed to be filled up with zeros.
const std::string kZeroVarSuffix = "@ZERO";
inline std::string GradVarName(const std::string& var_name) {
return var_name + kGradVarSuffix;
}
class OperatorBase; class OperatorBase;
class InferShapeContext; class InferShapeContext;
class ExecutionContext; class ExecutionContext;
/** /**
* OperatorBase has the basic element that Net will call to do computation. * OperatorBase has the basic element that Net will call to do computation.
* Only CreateOperator from OpRegistry will new Operator directly. User * Only CreateOperator from OpRegistry will new Operator directly. User
@ -43,25 +63,6 @@ class ExecutionContext;
*/ */
class OperatorBase { class OperatorBase {
public: public:
/// If a variable is a empty variable, that name will be used.
static std::string EMPTY_VAR_NAME() { return "@EMPTY@"; }
/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
static std::string TMP_VAR_NAME() { return "@TEMP@"; }
/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
static std::string GRAD_VAR_SUFFIX() { return "@GRAD"; }
static std::string GRAD_VAR_NAME(const std::string& name) {
return name + GRAD_VAR_SUFFIX();
}
/// Variables with this suffix are supposed to be filled up with zeros.
static std::string ZERO_VAR_SUFFIX() { return "@ZERO"; }
virtual ~OperatorBase() {} virtual ~OperatorBase() {}
template <typename T> template <typename T>
@ -284,7 +285,7 @@ class OperatorWithKernel : public OperatorBase {
platform::Place place_; platform::Place place_;
OpKernelKey() = default; OpKernelKey() = default;
OpKernelKey(const platform::DeviceContext& dev_ctx) { explicit OpKernelKey(const platform::DeviceContext& dev_ctx) {
place_ = dev_ctx.GetPlace(); place_ = dev_ctx.GetPlace();
} }

@ -105,7 +105,16 @@ PYBIND11_PLUGIN(core) {
.def("set", PyCUDATensorSetFromArray<float>) .def("set", PyCUDATensorSetFromArray<float>)
.def("set", PyCUDATensorSetFromArray<int>) .def("set", PyCUDATensorSetFromArray<int>)
#endif #endif
.def("shape", [](Tensor &self) { return vectorize(self.dims()); }); .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
.def("set_float_element",
[](Tensor &self, size_t offset, float f) {
// TODO(yuyang18): Only support GPU now.
self.data<float>()[offset] = f;
})
.def("get_float_element", [](Tensor &self, size_t offset) -> float {
// TODO(yuyang18): Only support GPU now.
return self.data<float>()[offset];
});
py::class_<Variable>(m, "Variable", R"DOC(Variable Class. py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
@ -154,8 +163,8 @@ All parameter, weight, gradient are variables in Paddle.
m.def_submodule( m.def_submodule(
"var_names", "var_names",
"The module will return special predefined variable name in Paddle") "The module will return special predefined variable name in Paddle")
.def("empty", OperatorBase::EMPTY_VAR_NAME) .def("empty", []() { return kEmptyVarName; })
.def("temp", OperatorBase::TMP_VAR_NAME); .def("temp", []() { return kTempVarName; });
// clang-format off // clang-format off
py::class_<paddle::platform::DeviceContext>(m, "DeviceContext") py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
.def_static("create", .def_static("create",

@ -967,8 +967,9 @@ void RecurrentGradientMachine::generateSequence() {
size_t numSequences = getGenBatchSize(); size_t numSequences = getGenBatchSize();
resizeBootFrame(numSequences); resizeBootFrame(numSequences);
// We create only two sub-network in generation for alternate use. // We create only two sub-network in generation, one stores states of all
// Thus, we can reduce total memory of output_ in layer forward. // layers in previous time step and the other storing the states at current
// time step.
resizeOrCreateFrames(2); resizeOrCreateFrames(2);
// outFrameLines_.size() > 1UL // outFrameLines_.size() > 1UL
@ -1001,10 +1002,9 @@ void RecurrentGradientMachine::generateSequence() {
// init outArg // init outArg
size_t resultNum = generator_.config.num_results_per_sample(); size_t resultNum = generator_.config.num_results_per_sample();
IVector::resizeOrCreate( size_t maxGenWordCount =
generator_.outArg.ids, generator_.config.max_num_frames() * numSequences * resultNum;
generator_.config.max_num_frames() * numSequences * resultNum, IVector::resizeOrCreate(generator_.outArg.ids, maxGenWordCount, false);
false);
if (resultNum > 1) { if (resultNum > 1) {
CHECK_LE(resultNum, static_cast<size_t>(generator_.config.beam_size())); CHECK_LE(resultNum, static_cast<size_t>(generator_.config.beam_size()));
Matrix::resizeOrCreate(generator_.outArg.in, Matrix::resizeOrCreate(generator_.outArg.in,
@ -1012,6 +1012,11 @@ void RecurrentGradientMachine::generateSequence() {
/* width */ resultNum, /* width */ resultNum,
false, false,
/* useGpu */ false); /* useGpu */ false);
Matrix::resizeOrCreate(generator_.outArg.value,
/* height */ maxGenWordCount,
/* width */ 1,
false,
/* useGpu */ false);
} }
ICpuGpuVector::resizeOrCreate(generator_.outArg.sequenceStartPositions, ICpuGpuVector::resizeOrCreate(generator_.outArg.sequenceStartPositions,
numSequences + 1, numSequences + 1,
@ -1313,13 +1318,20 @@ void RecurrentGradientMachine::fillGenOutputs() {
starts[0] = 0; starts[0] = 0;
if (numResults > 1) { if (numResults > 1) {
real* probs = generator_.outArg.in->getData(); real* probs = generator_.outArg.in->getData();
real* idsProb = generator_.outArg.value->getData();
size_t curPos = 0;
for (size_t i = 0; i < finalPaths_.size(); ++i) { for (size_t i = 0; i < finalPaths_.size(); ++i) {
for (size_t j = 0; j < finalPaths_[i].size(); ++j) { for (size_t j = 0; j < finalPaths_[i].size(); ++j) {
Path& path = finalPaths_[i][j]; Path& path = finalPaths_[i][j];
generator_.ids.push_back(path.ids.size()); // sequence size size_t genLen = path.ids.size();
generator_.ids.push_back(genLen); // sequence size
generator_.ids.insert( generator_.ids.insert(
generator_.ids.end(), path.ids.begin(), path.ids.end()); generator_.ids.end(), path.ids.begin(), path.ids.end());
generator_.ids.push_back(-1); // end of sequence generator_.ids.push_back(-1); // end of sequence
memcpy(idsProb + curPos, path.idsProb.data(), sizeof(real) * genLen);
curPos += genLen;
idsProb[curPos++] = -1.0;
probs[i * numResults + j] = path.logProb; probs[i * numResults + j] = path.logProb;
if (!j && dataArgsSize_) { if (!j && dataArgsSize_) {

@ -189,6 +189,11 @@ public:
*/ */
std::vector<int> ids; std::vector<int> ids;
/**
* @brief idsProb, log probability of each generated words.
*/
std::vector<real> idsProb;
/** /**
* @brief logProb, current probability of path. * @brief logProb, current probability of path.
*/ */
@ -228,11 +233,13 @@ public:
*/ */
Path(Path& old, int newId, real logProb, int machineId, int topIndex) Path(Path& old, int newId, real logProb, int machineId, int topIndex)
: ids(old.ids), : ids(old.ids),
idsProb(old.idsProb),
logProb(old.logProb + logProb), logProb(old.logProb + logProb),
machineId(machineId), machineId(machineId),
topIndex(topIndex), topIndex(topIndex),
seqId(old.seqId) { seqId(old.seqId) {
ids.push_back(newId); ids.push_back(newId);
idsProb.push_back(logProb);
if (!old.probHistory.empty()) { if (!old.probHistory.empty()) {
this->probHistory = old.probHistory; this->probHistory = old.probHistory;
// probHistory store current prob, not sum // probHistory store current prob, not sum
@ -411,8 +418,9 @@ protected:
struct Generator { struct Generator {
GeneratorConfig config; GeneratorConfig config;
std::vector<int> ids; // store generated sequences std::vector<int> ids; // store generated sequences
Argument outArg; // final output argument std::vector<real> idsProb; // log probability of each generated word
Argument outArg; // final output argument
}; };
bool generating_; bool generating_;
Generator generator_; Generator generator_;

@ -1,5 +1,10 @@
# gserver pacakge unittests # gserver pacakge unittests
file(GLOB_RECURSE GSERVER_HEADER RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*.h")
file(GLOB_RECURSE GSERVER_SOURCES RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*.cpp")
add_style_check_target(paddle_gserver ${GSERVER_SOURCES})
add_style_check_target(paddle_gserver ${GSERVER_HEADER})
################### test_ProtoDataProvider ############ ################### test_ProtoDataProvider ############
add_unittest_without_exec(test_ProtoDataProvider add_unittest_without_exec(test_ProtoDataProvider
test_ProtoDataProvider.cpp) test_ProtoDataProvider.cpp)
@ -50,7 +55,7 @@ add_unittest_without_exec(test_DetectionOutput
test_DetectionOutput.cpp test_DetectionOutput.cpp
LayerGradUtil.cpp) LayerGradUtil.cpp)
add_test(NAME test_DetectionOutput add_test(NAME test_DetectionOutput
COMMAND test_DetectionOutput) COMMAND test_DetectionOutput)
################# test_ConvUnify ####################### ################# test_ConvUnify #######################
add_unittest_without_exec(test_ConvUnify add_unittest_without_exec(test_ConvUnify

@ -400,7 +400,6 @@ void initDataLayer(TestConfig testConf,
const std::vector<int>& labelSeqStartPositions = const std::vector<int>& labelSeqStartPositions =
testConf.inputDefs[i].labelSeqStartPositions; testConf.inputDefs[i].labelSeqStartPositions;
if (labelSeqStartPositions.size() != 0) { if (labelSeqStartPositions.size() != 0) {
CHECK(!sequenceStartPositions);
CHECK_GE(static_cast<int>(labelSeqStartPositions.size()), 2); CHECK_GE(static_cast<int>(labelSeqStartPositions.size()), 2);
sequenceStartPositions = sequenceStartPositions =
@ -410,6 +409,19 @@ void initDataLayer(TestConfig testConf,
useGpu); useGpu);
data.sequenceStartPositions = sequenceStartPositions; data.sequenceStartPositions = sequenceStartPositions;
} }
const std::vector<int>& labelSubSeqStartPositions =
testConf.inputDefs[i].labelSubSeqStartPositions;
if (labelSubSeqStartPositions.size() != 0) {
CHECK_GE(static_cast<int>(labelSubSeqStartPositions.size()), 2);
subSequenceStartPositions =
ICpuGpuVector::create(labelSubSeqStartPositions.size(), useGpu);
subSequenceStartPositions->copyFrom(labelSubSeqStartPositions.data(),
labelSubSeqStartPositions.size(),
useGpu);
data.subSequenceStartPositions = subSequenceStartPositions;
}
break; break;
} }
default: default:

@ -67,6 +67,7 @@ struct InputDef {
bool isStatic; bool isStatic;
std::vector<int> labelInitValue; std::vector<int> labelInitValue;
std::vector<int> labelSeqStartPositions; std::vector<int> labelSeqStartPositions;
std::vector<int> labelSubSeqStartPositions;
MatrixPtr selfDefinedData; MatrixPtr selfDefinedData;
InputDef(InputType type, string nameIn, size_t dimIn, size_t sizeIn) { InputDef(InputType type, string nameIn, size_t dimIn, size_t sizeIn) {
@ -81,8 +82,10 @@ struct InputDef {
InputDef(InputType type, InputDef(InputType type,
string nameIn, string nameIn,
MatrixPtr selfDefinedData, MatrixPtr selfDefinedData,
std::vector<int> selfDefinedSeqStartPos = {}) std::vector<int> selfDefinedSeqStartPos = {},
std::vector<int> selfDefinedSubSeqStartPos = {})
: labelSeqStartPositions(selfDefinedSeqStartPos), : labelSeqStartPositions(selfDefinedSeqStartPos),
labelSubSeqStartPositions(selfDefinedSubSeqStartPos),
selfDefinedData(selfDefinedData) { selfDefinedData(selfDefinedData) {
inputType = type; inputType = type;
name = nameIn; name = nameIn;

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save