Add momentum operator

revert-4814-Add_sequence_project_op
sidgoyal78 7 years ago
parent 42e7fe05a2
commit d28b3094dd

@ -0,0 +1,89 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/momentum_op.h"
namespace paddle {
namespace operators {
class MomentumOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContextBase *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Param"),
"Input(param) of Momentum should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Grad"),
"Input(grad) of Momentum should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Velocity"),
"Input(velocity) of Momentum should not be null.");
PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
"Input(LearningRate) of Momentum should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
"Output(ParamOut) of Momentum should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("VelocityOut"),
"Output(VelocityOut) of Momentum should not be null.");
auto param_dim = ctx->GetInputDim("Param");
PADDLE_ENFORCE_EQ(
param_dim, ctx->GetInputDim("Grad"),
"Param and Grad input of MomentumOp should have the same dimension.");
PADDLE_ENFORCE_EQ(
param_dim, ctx->GetInputDim("Velocity"),
"Param and Velocity of MomentumOp should have the same dimension.");
PADDLE_ENFORCE_EQ(framework::product(ctx->GetInputDim("LearningRate")), 1,
"Learning_rate should be a scalar");
ctx->SetOutputDim("ParamOut", param_dim);
ctx->SetOutputDim("VelocityOut", param_dim);
}
};
class MomentumOpMaker : public framework::OpProtoAndCheckerMaker {
public:
MomentumOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("Param", "Input parameter");
AddInput("Grad", "Input gradient");
AddInput("Velocity", "Input velocity");
AddInput("LearningRate", "Input learning rate");
AddOutput("ParamOut", "Output parameter");
AddOutput("VelocityOut", "Output velocity");
AddAttr<float>("mu", "Momentum coefficient");
AddComment(R"DOC(
Momentum Algorithm (momentum).
velocity_out = mu * velocity - learning_rate * grad
param_out = param + velocity_out
Ref: Sutskever, Ilya, et al. "On the importance of initialization
and momentum in deep learning." ICML 2013;
http://jmlr.org/proceedings/papers/v28/sutskever13.pdf
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(momentum, ops::MomentumOp, ops::MomentumOpMaker);
REGISTER_OP_CPU_KERNEL(
momentum, ops::MomentumOpKernel<paddle::platform::CPUPlace, float>);

@ -0,0 +1,20 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/momentum_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
momentum, ops::MomentumOpKernel<paddle::platform::GPUPlace, float>);

@ -0,0 +1,53 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
template <typename Place, typename T>
class MomentumOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto param_out = ctx.Output<Tensor>("ParamOut");
auto velocity_out = ctx.Output<Tensor>("VelocityOut");
param_out->mutable_data<T>(ctx.GetPlace());
velocity_out->mutable_data<T>(ctx.GetPlace());
float mu = ctx.Attr<float>("mu");
auto p = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Param"));
auto g = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Grad"));
auto v = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Velocity"));
float lr = ctx.Input<Tensor>("LearningRate")->data<float>()[0];
auto p_out = EigenVector<T>::Flatten(*param_out);
auto v_out = EigenVector<T>::Flatten(*velocity_out);
auto place = ctx.GetEigenDevice<Place>();
v_out.device(place) = mu * v - lr * g;
p_out.device(place) = p + v_out;
}
};
} // namespace operators
} // namespace paddle

@ -0,0 +1,35 @@
import unittest
import numpy as np
from op_test import OpTest
class TestMomentumOp(OpTest):
def setUp(self):
self.op_type = "momentum"
param = np.random.random((123, 321)).astype("float32")
grad = np.random.random((123, 321)).astype("float32")
velocity = np.zeros((123, 321)).astype("float32")
learning_rate = np.array([0.001]).astype("float32")
mu = 0.0001
self.inputs = {
'Param': param,
'Grad': grad,
'Velocity': velocity,
'LearningRate': learning_rate
}
self.attrs = {'mu': mu}
velocity_out = mu * velocity - learning_rate * grad
param_out = param + velocity_out
self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}
def test_check_output(self):
self.check_output()
if __name__ == "__main__":
unittest.main()
Loading…
Cancel
Save