parent
42e7fe05a2
commit
d28b3094dd
@ -0,0 +1,89 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/momentum_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class MomentumOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContextBase *ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("Param"),
|
||||
"Input(param) of Momentum should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("Grad"),
|
||||
"Input(grad) of Momentum should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("Velocity"),
|
||||
"Input(velocity) of Momentum should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
|
||||
"Input(LearningRate) of Momentum should not be null.");
|
||||
|
||||
PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
|
||||
"Output(ParamOut) of Momentum should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("VelocityOut"),
|
||||
"Output(VelocityOut) of Momentum should not be null.");
|
||||
|
||||
auto param_dim = ctx->GetInputDim("Param");
|
||||
PADDLE_ENFORCE_EQ(
|
||||
param_dim, ctx->GetInputDim("Grad"),
|
||||
"Param and Grad input of MomentumOp should have the same dimension.");
|
||||
PADDLE_ENFORCE_EQ(
|
||||
param_dim, ctx->GetInputDim("Velocity"),
|
||||
"Param and Velocity of MomentumOp should have the same dimension.");
|
||||
PADDLE_ENFORCE_EQ(framework::product(ctx->GetInputDim("LearningRate")), 1,
|
||||
"Learning_rate should be a scalar");
|
||||
|
||||
ctx->SetOutputDim("ParamOut", param_dim);
|
||||
ctx->SetOutputDim("VelocityOut", param_dim);
|
||||
}
|
||||
};
|
||||
|
||||
class MomentumOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
MomentumOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("Param", "Input parameter");
|
||||
AddInput("Grad", "Input gradient");
|
||||
AddInput("Velocity", "Input velocity");
|
||||
AddInput("LearningRate", "Input learning rate");
|
||||
|
||||
AddOutput("ParamOut", "Output parameter");
|
||||
AddOutput("VelocityOut", "Output velocity");
|
||||
|
||||
AddAttr<float>("mu", "Momentum coefficient");
|
||||
AddComment(R"DOC(
|
||||
|
||||
Momentum Algorithm (momentum).
|
||||
|
||||
velocity_out = mu * velocity - learning_rate * grad
|
||||
param_out = param + velocity_out
|
||||
|
||||
Ref: Sutskever, Ilya, et al. "On the importance of initialization
|
||||
and momentum in deep learning." ICML 2013;
|
||||
http://jmlr.org/proceedings/papers/v28/sutskever13.pdf
|
||||
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_WITHOUT_GRADIENT(momentum, ops::MomentumOp, ops::MomentumOpMaker);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
momentum, ops::MomentumOpKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,20 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
#include "paddle/operators/momentum_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
momentum, ops::MomentumOpKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,53 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
template <typename T, int MajorType = Eigen::RowMajor,
|
||||
typename IndexType = Eigen::DenseIndex>
|
||||
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
||||
|
||||
template <typename Place, typename T>
|
||||
class MomentumOpKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto param_out = ctx.Output<Tensor>("ParamOut");
|
||||
auto velocity_out = ctx.Output<Tensor>("VelocityOut");
|
||||
|
||||
param_out->mutable_data<T>(ctx.GetPlace());
|
||||
velocity_out->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
float mu = ctx.Attr<float>("mu");
|
||||
|
||||
auto p = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Param"));
|
||||
auto g = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Grad"));
|
||||
auto v = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Velocity"));
|
||||
float lr = ctx.Input<Tensor>("LearningRate")->data<float>()[0];
|
||||
auto p_out = EigenVector<T>::Flatten(*param_out);
|
||||
auto v_out = EigenVector<T>::Flatten(*velocity_out);
|
||||
auto place = ctx.GetEigenDevice<Place>();
|
||||
|
||||
v_out.device(place) = mu * v - lr * g;
|
||||
p_out.device(place) = p + v_out;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,35 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestMomentumOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "momentum"
|
||||
|
||||
param = np.random.random((123, 321)).astype("float32")
|
||||
grad = np.random.random((123, 321)).astype("float32")
|
||||
velocity = np.zeros((123, 321)).astype("float32")
|
||||
learning_rate = np.array([0.001]).astype("float32")
|
||||
mu = 0.0001
|
||||
|
||||
self.inputs = {
|
||||
'Param': param,
|
||||
'Grad': grad,
|
||||
'Velocity': velocity,
|
||||
'LearningRate': learning_rate
|
||||
}
|
||||
|
||||
self.attrs = {'mu': mu}
|
||||
|
||||
velocity_out = mu * velocity - learning_rate * grad
|
||||
param_out = param + velocity_out
|
||||
|
||||
self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue