parent
42e7fe05a2
commit
d28b3094dd
@ -0,0 +1,89 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/momentum_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
class MomentumOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(framework::InferShapeContextBase *ctx) const override {
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("Param"),
|
||||||
|
"Input(param) of Momentum should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("Grad"),
|
||||||
|
"Input(grad) of Momentum should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("Velocity"),
|
||||||
|
"Input(velocity) of Momentum should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
|
||||||
|
"Input(LearningRate) of Momentum should not be null.");
|
||||||
|
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
|
||||||
|
"Output(ParamOut) of Momentum should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutput("VelocityOut"),
|
||||||
|
"Output(VelocityOut) of Momentum should not be null.");
|
||||||
|
|
||||||
|
auto param_dim = ctx->GetInputDim("Param");
|
||||||
|
PADDLE_ENFORCE_EQ(
|
||||||
|
param_dim, ctx->GetInputDim("Grad"),
|
||||||
|
"Param and Grad input of MomentumOp should have the same dimension.");
|
||||||
|
PADDLE_ENFORCE_EQ(
|
||||||
|
param_dim, ctx->GetInputDim("Velocity"),
|
||||||
|
"Param and Velocity of MomentumOp should have the same dimension.");
|
||||||
|
PADDLE_ENFORCE_EQ(framework::product(ctx->GetInputDim("LearningRate")), 1,
|
||||||
|
"Learning_rate should be a scalar");
|
||||||
|
|
||||||
|
ctx->SetOutputDim("ParamOut", param_dim);
|
||||||
|
ctx->SetOutputDim("VelocityOut", param_dim);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class MomentumOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
MomentumOpMaker(framework::OpProto *proto,
|
||||||
|
framework::OpAttrChecker *op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput("Param", "Input parameter");
|
||||||
|
AddInput("Grad", "Input gradient");
|
||||||
|
AddInput("Velocity", "Input velocity");
|
||||||
|
AddInput("LearningRate", "Input learning rate");
|
||||||
|
|
||||||
|
AddOutput("ParamOut", "Output parameter");
|
||||||
|
AddOutput("VelocityOut", "Output velocity");
|
||||||
|
|
||||||
|
AddAttr<float>("mu", "Momentum coefficient");
|
||||||
|
AddComment(R"DOC(
|
||||||
|
|
||||||
|
Momentum Algorithm (momentum).
|
||||||
|
|
||||||
|
velocity_out = mu * velocity - learning_rate * grad
|
||||||
|
param_out = param + velocity_out
|
||||||
|
|
||||||
|
Ref: Sutskever, Ilya, et al. "On the importance of initialization
|
||||||
|
and momentum in deep learning." ICML 2013;
|
||||||
|
http://jmlr.org/proceedings/papers/v28/sutskever13.pdf
|
||||||
|
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP_WITHOUT_GRADIENT(momentum, ops::MomentumOp, ops::MomentumOpMaker);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
momentum, ops::MomentumOpKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,20 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#define EIGEN_USE_GPU
|
||||||
|
#include "paddle/operators/momentum_op.h"
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP_GPU_KERNEL(
|
||||||
|
momentum, ops::MomentumOpKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,53 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include "paddle/framework/eigen.h"
|
||||||
|
#include "paddle/framework/op_registry.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
template <typename T, int MajorType = Eigen::RowMajor,
|
||||||
|
typename IndexType = Eigen::DenseIndex>
|
||||||
|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class MomentumOpKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||||
|
auto param_out = ctx.Output<Tensor>("ParamOut");
|
||||||
|
auto velocity_out = ctx.Output<Tensor>("VelocityOut");
|
||||||
|
|
||||||
|
param_out->mutable_data<T>(ctx.GetPlace());
|
||||||
|
velocity_out->mutable_data<T>(ctx.GetPlace());
|
||||||
|
|
||||||
|
float mu = ctx.Attr<float>("mu");
|
||||||
|
|
||||||
|
auto p = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Param"));
|
||||||
|
auto g = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Grad"));
|
||||||
|
auto v = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Velocity"));
|
||||||
|
float lr = ctx.Input<Tensor>("LearningRate")->data<float>()[0];
|
||||||
|
auto p_out = EigenVector<T>::Flatten(*param_out);
|
||||||
|
auto v_out = EigenVector<T>::Flatten(*velocity_out);
|
||||||
|
auto place = ctx.GetEigenDevice<Place>();
|
||||||
|
|
||||||
|
v_out.device(place) = mu * v - lr * g;
|
||||||
|
p_out.device(place) = p + v_out;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,35 @@
|
|||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from op_test import OpTest
|
||||||
|
|
||||||
|
|
||||||
|
class TestMomentumOp(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "momentum"
|
||||||
|
|
||||||
|
param = np.random.random((123, 321)).astype("float32")
|
||||||
|
grad = np.random.random((123, 321)).astype("float32")
|
||||||
|
velocity = np.zeros((123, 321)).astype("float32")
|
||||||
|
learning_rate = np.array([0.001]).astype("float32")
|
||||||
|
mu = 0.0001
|
||||||
|
|
||||||
|
self.inputs = {
|
||||||
|
'Param': param,
|
||||||
|
'Grad': grad,
|
||||||
|
'Velocity': velocity,
|
||||||
|
'LearningRate': learning_rate
|
||||||
|
}
|
||||||
|
|
||||||
|
self.attrs = {'mu': mu}
|
||||||
|
|
||||||
|
velocity_out = mu * velocity - learning_rate * grad
|
||||||
|
param_out = param + velocity_out
|
||||||
|
|
||||||
|
self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue