Add xpu kernel for KUNLUN core: * accuracy op * sign op * scale op * sum op Add default atol in xpu unittest.my_2.0rc
parent
4676f03cbb
commit
d4359b0f39
@ -0,0 +1,120 @@
|
||||
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#ifdef PADDLE_WITH_XPU
|
||||
|
||||
#include "paddle/fluid/operators/metrics/accuracy_op.h"
|
||||
#include "paddle/fluid/platform/xpu_header.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class AccuracyXPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* inference = ctx.Input<Tensor>("Out");
|
||||
auto* indices = ctx.Input<Tensor>("Indices");
|
||||
auto* label = ctx.Input<Tensor>("Label");
|
||||
auto* accuracy = ctx.Output<Tensor>("Accuracy");
|
||||
auto* correct = ctx.Output<Tensor>("Correct");
|
||||
auto* total = ctx.Output<Tensor>("Total");
|
||||
int* correct_data = correct->mutable_data<int>(ctx.GetPlace());
|
||||
int* total_data = total->mutable_data<int>(ctx.GetPlace());
|
||||
float* accuracy_data = accuracy->mutable_data<float>(ctx.GetPlace());
|
||||
const int64_t* indices_data = indices->data<int64_t>();
|
||||
const int64_t* label_data = label->data<int64_t>();
|
||||
size_t num_samples = inference->dims()[0];
|
||||
size_t class_dim = inference->dims()[1];
|
||||
if (num_samples == 0) {
|
||||
return;
|
||||
}
|
||||
size_t indices_int32_size = num_samples * class_dim * sizeof(int);
|
||||
size_t indices_int64_size = num_samples * class_dim * sizeof(int64_t);
|
||||
size_t label_int32_size = num_samples * sizeof(int);
|
||||
size_t label_int64_size = num_samples * sizeof(int64_t);
|
||||
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
||||
int* indices_int32_device = NULL;
|
||||
PADDLE_ENFORCE_EQ(
|
||||
xpu_malloc(reinterpret_cast<void**>(&indices_int32_device),
|
||||
indices_int32_size),
|
||||
XPU_SUCCESS,
|
||||
platform::errors::ResourceExhausted(
|
||||
"\n\nOut of memory error on XPU, Cannot allocate %s memory"
|
||||
" on XPU. \n\nPlease check whether there is any other process "
|
||||
"using XPU.\n",
|
||||
string::HumanReadableSize(indices_int32_size)));
|
||||
int* label_int32_device = NULL;
|
||||
PADDLE_ENFORCE_EQ(
|
||||
xpu_malloc(reinterpret_cast<void**>(&label_int32_device),
|
||||
label_int32_size),
|
||||
XPU_SUCCESS,
|
||||
platform::errors::ResourceExhausted(
|
||||
"\n\nOut of memory error on XPU, Cannot allocate %s memory"
|
||||
" on XPU. \n\nPlease check whether there is any other process "
|
||||
"using XPU.\n",
|
||||
string::HumanReadableSize(label_int32_size)));
|
||||
|
||||
int* indices_int32_host =
|
||||
reinterpret_cast<int*>(std::malloc(indices_int32_size));
|
||||
int64_t* indices_int64_host =
|
||||
reinterpret_cast<int64_t*>(std::malloc(indices_int64_size));
|
||||
int* label_int32_host =
|
||||
reinterpret_cast<int*>(std::malloc(label_int32_size));
|
||||
int64_t* label_int64_host =
|
||||
reinterpret_cast<int64_t*>(std::malloc(label_int64_size));
|
||||
dev_ctx.Wait();
|
||||
memory::Copy(platform::CPUPlace(), indices_int64_host,
|
||||
BOOST_GET_CONST(platform::XPUPlace, ctx.GetPlace()),
|
||||
indices_data, indices_int64_size);
|
||||
memory::Copy(platform::CPUPlace(), label_int64_host,
|
||||
BOOST_GET_CONST(platform::XPUPlace, ctx.GetPlace()),
|
||||
label_data, label_int64_size);
|
||||
for (int i = 0; i < num_samples; ++i) {
|
||||
label_int32_host[i] = label_int64_host[i];
|
||||
for (int j = 0; j < class_dim; ++j) {
|
||||
indices_int32_host[i * class_dim + j] =
|
||||
indices_int64_host[i * class_dim + j];
|
||||
}
|
||||
}
|
||||
memory::Copy(BOOST_GET_CONST(platform::XPUPlace, ctx.GetPlace()),
|
||||
indices_int32_device, platform::CPUPlace(), indices_int32_host,
|
||||
indices_int32_size);
|
||||
memory::Copy(BOOST_GET_CONST(platform::XPUPlace, ctx.GetPlace()),
|
||||
label_int32_device, platform::CPUPlace(), label_int32_host,
|
||||
label_int32_size);
|
||||
int r = xpu::accuracy(dev_ctx.x_context(), indices_int32_device,
|
||||
label_int32_device, num_samples, class_dim,
|
||||
correct_data, total_data, accuracy_data);
|
||||
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
|
||||
platform::errors::Fatal("XPU kernel error!"));
|
||||
dev_ctx.Wait();
|
||||
xpu_free(indices_int32_device);
|
||||
xpu_free(label_int32_device);
|
||||
std::free(indices_int32_host);
|
||||
std::free(indices_int64_host);
|
||||
std::free(label_int32_host);
|
||||
std::free(label_int64_host);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_XPU_KERNEL(
|
||||
accuracy,
|
||||
ops::AccuracyXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
||||
|
||||
#endif
|
@ -0,0 +1,63 @@
|
||||
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#ifdef PADDLE_WITH_XPU
|
||||
|
||||
#include "paddle/fluid/operators/scale_op.h"
|
||||
#include <string>
|
||||
#include "paddle/fluid/platform/xpu_header.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
template <typename DeviceContext, typename T>
|
||||
class ScaleXPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
virtual void Compute(const framework::ExecutionContext& ctx) const {
|
||||
auto* in_var = ctx.InputVar("X");
|
||||
auto* in = framework::GetLoDTensorOrSelectedRowsValueFromVar(*in_var);
|
||||
auto scale = static_cast<T>(ctx.Attr<float>("scale"));
|
||||
auto bias = static_cast<T>(ctx.Attr<float>("bias"));
|
||||
auto bias_after_scale = ctx.Attr<bool>("bias_after_scale");
|
||||
auto* out_var = ctx.OutputVar("Out");
|
||||
if (in_var->IsType<framework::SelectedRows>() && in_var != out_var) {
|
||||
auto& in_slr = in_var->Get<framework::SelectedRows>();
|
||||
auto* out_slr = out_var->GetMutable<framework::SelectedRows>();
|
||||
out_slr->set_rows(in_slr.rows());
|
||||
out_slr->set_height(in_slr.height());
|
||||
}
|
||||
auto* out =
|
||||
framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(out_var);
|
||||
out->mutable_data<T>(in->place());
|
||||
PADDLE_ENFORCE_EQ(
|
||||
in->dims(), out->dims(),
|
||||
platform::errors::InvalidArgument("In and out should have the same dim,"
|
||||
" expected %s, but got %s.",
|
||||
in->dims().to_str().c_str(),
|
||||
out->dims().to_str().c_str()));
|
||||
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
||||
int r = xpu::scale(dev_ctx.x_context(), in->numel(), scale, bias,
|
||||
bias_after_scale, in->data<float>(), out->data<float>());
|
||||
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
|
||||
platform::errors::Fatal("XPU kernel error!"));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_XPU_KERNEL(
|
||||
scale, ops::ScaleXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
||||
|
||||
#endif
|
@ -0,0 +1,44 @@
|
||||
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#ifdef PADDLE_WITH_XPU
|
||||
|
||||
#include "paddle/fluid/operators/sign_op.h"
|
||||
#include "paddle/fluid/platform/xpu_header.h"
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class SignXPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
virtual void Compute(const framework::ExecutionContext& context) const {
|
||||
auto* out = context.Output<framework::Tensor>("Out");
|
||||
auto* in = context.Input<framework::Tensor>("X");
|
||||
out->mutable_data<T>(in->place());
|
||||
auto xpu_context = context.device_context<DeviceContext>().x_context();
|
||||
int r = xpu::activation_forward(xpu_context, xpu::Activation_t::SIGN,
|
||||
in->numel(), in->data<T>(), out->data<T>());
|
||||
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
|
||||
platform::errors::Fatal("XPU kernel error!"));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_XPU_KERNEL(
|
||||
sign, ops::SignXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
||||
|
||||
#endif
|
@ -0,0 +1,65 @@
|
||||
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#ifdef PADDLE_WITH_XPU
|
||||
|
||||
#include "paddle/fluid/operators/sum_op.h"
|
||||
#include <vector>
|
||||
#include "paddle/fluid/platform/xpu_header.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
using framework::Tensor;
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class SumXPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &context) const override {
|
||||
auto in_vars = context.MultiInputVar("X");
|
||||
auto out_var = context.OutputVar("Out");
|
||||
auto *out = context.Output<LoDTensor>("Out");
|
||||
bool in_place = out_var == in_vars[0];
|
||||
int N = in_vars.size();
|
||||
PADDLE_ENFORCE_EQ(
|
||||
out_var->IsType<framework::LoDTensor>(), true,
|
||||
platform::errors::InvalidArgument("XPU only surpport LodTensor"));
|
||||
if (!in_place) {
|
||||
out->mutable_data<T>(context.GetPlace());
|
||||
}
|
||||
auto &dev_ctx = context.template device_context<DeviceContext>();
|
||||
std::vector<const float *> ptrs(N, nullptr);
|
||||
int valid_count = 0;
|
||||
for (int i = 0; i < N; ++i) {
|
||||
PADDLE_ENFORCE_EQ(
|
||||
in_vars[i]->IsType<framework::LoDTensor>(), true,
|
||||
platform::errors::InvalidArgument("XPU only surpport LodTensor"));
|
||||
auto &in_t = in_vars[i]->Get<framework::LoDTensor>();
|
||||
if (in_t.numel() == 0) {
|
||||
continue;
|
||||
}
|
||||
ptrs[valid_count] = reinterpret_cast<const float *>(in_t.data<T>());
|
||||
valid_count++;
|
||||
}
|
||||
int r = xpu::sum_batch(dev_ctx.x_context(), ptrs.data(), out->data<T>(),
|
||||
valid_count, out->numel());
|
||||
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
|
||||
platform::errors::Fatal("XPU kernel error!"));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_XPU_KERNEL(
|
||||
sum, ops::SumXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
||||
#endif
|
@ -0,0 +1,63 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
from op_test import OpTest
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid import compiler, Program, program_guard
|
||||
import paddle
|
||||
|
||||
paddle.enable_static()
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
|
||||
"core is not compiled with XPU")
|
||||
class TestXPUAccuracyOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "accuracy"
|
||||
self.init_dtype()
|
||||
n = 8192
|
||||
infer = np.random.random((n, 1)).astype(self.dtype)
|
||||
indices = np.random.randint(0, 2, (n, 1)).astype('int64')
|
||||
label = np.random.randint(0, 2, (n, 1)).astype('int64')
|
||||
self.inputs = {'Out': infer, 'Indices': indices, "Label": label}
|
||||
num_correct = 0
|
||||
for rowid in range(n):
|
||||
for ele in indices[rowid]:
|
||||
if ele == label[rowid]:
|
||||
num_correct += 1
|
||||
break
|
||||
self.outputs = {
|
||||
'Accuracy': np.array([num_correct / float(n)]).astype(self.dtype),
|
||||
'Correct': np.array([num_correct]).astype("int32"),
|
||||
'Total': np.array([n]).astype("int32")
|
||||
}
|
||||
self.attrs = {'use_xpu': True}
|
||||
|
||||
def init_dtype(self):
|
||||
self.dtype = np.float32
|
||||
|
||||
def test_check_output(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -0,0 +1,54 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
from op_test import OpTest
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid.op import Operator
|
||||
import paddle
|
||||
|
||||
paddle.enable_static()
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
|
||||
"core is not compiled with XPU")
|
||||
class TestXPUScaleOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "scale"
|
||||
self.dtype = np.float32
|
||||
self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)}
|
||||
self.attrs = {'scale': -2.3, 'use_xpu': True}
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'] * self.dtype(self.attrs['scale'])
|
||||
}
|
||||
|
||||
def test_check_output(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place)
|
||||
|
||||
def test_check_grad(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_grad_with_place(place, ['X'], 'Out')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@ -0,0 +1,54 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
from op_test import OpTest
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid import Program, program_guard
|
||||
import paddle
|
||||
|
||||
paddle.enable_static()
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
|
||||
"core is not compiled with XPU")
|
||||
class TestXPUSignOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "sign"
|
||||
self.dtype = np.float32
|
||||
self.inputs = {
|
||||
'X': np.random.uniform(-10, 10, (10, 10)).astype(self.dtype)
|
||||
}
|
||||
self.outputs = {'Out': np.sign(self.inputs['X'])}
|
||||
self.attrs = {'use_xpu': True}
|
||||
|
||||
def test_check_output(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place)
|
||||
|
||||
def test_check_grad(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_grad_with_place(place, ['X'], 'Out')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@ -0,0 +1,61 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
from op_test import OpTest
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid.op import Operator
|
||||
import paddle
|
||||
|
||||
paddle.enable_static()
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
|
||||
"core is not compiled with XPU")
|
||||
class TestXPUSumOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "sum"
|
||||
self.use_mkldnn = False
|
||||
self.init_kernel_type()
|
||||
x0 = np.random.random((3, 40)).astype(self.dtype)
|
||||
x1 = np.random.random((3, 40)).astype(self.dtype)
|
||||
x2 = np.random.random((3, 40)).astype(self.dtype)
|
||||
self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
|
||||
y = x0 + x1 + x2
|
||||
self.outputs = {'Out': y}
|
||||
self.attrs = {'use_mkldnn': self.use_mkldnn, 'use_xpu': True}
|
||||
|
||||
def init_kernel_type(self):
|
||||
self.dtype = np.float32
|
||||
|
||||
def test_check_output(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place)
|
||||
|
||||
def test_check_grad(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_grad_with_place(place, ['x0'], 'Out')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue