Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into imperative_mnist

test=develop
revert-15207-remove_op_handle_lock_and_fix_var
minqiyang 6 years ago
commit d4b9928c5a

@ -126,16 +126,12 @@ if(ANDROID OR IOS)
add_definitions(-DPADDLE_MOBILE_INFERENCE) add_definitions(-DPADDLE_MOBILE_INFERENCE)
endif() endif()
if (APPLE OR WIN32) if (APPLE)
set(WITH_MKL OFF CACHE STRING set(WITH_MKL OFF CACHE STRING
"Disable MKL for building on mac and windows" FORCE) "Disable MKL for building on mac" FORCE)
endif() endif()
if (WIN32) if (WIN32)
set(WITH_DSO OFF CACHE STRING
"Disable DSO when compiling for Windows" FORCE)
set(WITH_MKL OFF CACHE STRING
"Disable MKL when compiling for Windows" FORCE)
set(WITH_DISTRIBUTE OFF CACHE STRING set(WITH_DISTRIBUTE OFF CACHE STRING
"Disable DISTRIBUTE when compiling for Windows" FORCE) "Disable DISTRIBUTE when compiling for Windows" FORCE)
set(WITH_C_API OFF CACHE STRING set(WITH_C_API OFF CACHE STRING

@ -44,9 +44,9 @@ if(WIN32)
set(CUDNN_LIB_NAME "cudnn.lib" "cudnn64_7.dll") set(CUDNN_LIB_NAME "cudnn.lib" "cudnn64_7.dll")
endif(WIN32) endif(WIN32)
if(Apple) if(APPLE)
set(CUDNN_LIB_NAME "libcudnn.dylib" "libcudnn.so") set(CUDNN_LIB_NAME "libcudnn.dylib" "libcudnn.so")
endif(Apple) endif(APPLE)
find_library(CUDNN_LIBRARY NAMES ${CUDNN_LIB_NAME} # libcudnn_static.a find_library(CUDNN_LIBRARY NAMES ${CUDNN_LIB_NAME} # libcudnn_static.a
PATHS ${CUDNN_CHECK_LIBRARY_DIRS} ${CUDNN_INCLUDE_DIR} ${__libpath_hist} PATHS ${CUDNN_CHECK_LIBRARY_DIRS} ${CUDNN_INCLUDE_DIR} ${__libpath_hist}

@ -23,15 +23,14 @@ SET(MKLDNN_SOURCES_DIR ${THIRD_PARTY_PATH}/mkldnn)
SET(MKLDNN_INSTALL_DIR ${THIRD_PARTY_PATH}/install/mkldnn) SET(MKLDNN_INSTALL_DIR ${THIRD_PARTY_PATH}/install/mkldnn)
SET(MKLDNN_INC_DIR "${MKLDNN_INSTALL_DIR}/include" CACHE PATH "mkldnn include directory." FORCE) SET(MKLDNN_INC_DIR "${MKLDNN_INSTALL_DIR}/include" CACHE PATH "mkldnn include directory." FORCE)
IF(WIN32 OR APPLE) IF(APPLE)
MESSAGE(WARNING MESSAGE(WARNING
"Windows or Mac is not supported with MKLDNN in Paddle yet." "Mac is not supported with MKLDNN in Paddle yet."
"Force WITH_MKLDNN=OFF") "Force WITH_MKLDNN=OFF")
SET(WITH_MKLDNN OFF CACHE STRING "Disable MKLDNN in Windows and MacOS" FORCE) SET(WITH_MKLDNN OFF CACHE STRING "Disable MKLDNN in MacOS" FORCE)
return() return()
ENDIF() ENDIF()
SET(MKLDNN_LIB "${MKLDNN_INSTALL_DIR}/lib/libmkldnn.so" CACHE FILEPATH "mkldnn library." FORCE)
MESSAGE(STATUS "Set ${MKLDNN_INSTALL_DIR}/lib to runtime path") MESSAGE(STATUS "Set ${MKLDNN_INSTALL_DIR}/lib to runtime path")
SET(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE) SET(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE)
SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLDNN_INSTALL_DIR}/lib") SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLDNN_INSTALL_DIR}/lib")
@ -44,10 +43,14 @@ IF(${CBLAS_PROVIDER} STREQUAL "MKLML")
ELSE() ELSE()
MESSAGE(FATAL_ERROR "Should enable MKLML when build MKLDNN") MESSAGE(FATAL_ERROR "Should enable MKLML when build MKLDNN")
ENDIF() ENDIF()
SET(MKLDNN_FLAG "-Wno-error=strict-overflow -Wno-error=unused-result -Wno-error=array-bounds")
SET(MKLDNN_FLAG "${MKLDNN_FLAG} -Wno-unused-result -Wno-unused-value") IF(NOT WIN32)
SET(MKLDNN_CFLAG "${CMAKE_C_FLAGS} ${MKLDNN_FLAG}") SET(MKLDNN_FLAG "-Wno-error=strict-overflow -Wno-error=unused-result -Wno-error=array-bounds")
SET(MKLDNN_CXXFLAG "${CMAKE_CXX_FLAGS} ${MKLDNN_FLAG}") SET(MKLDNN_FLAG "${MKLDNN_FLAG} -Wno-unused-result -Wno-unused-value")
SET(MKLDNN_CFLAG "${CMAKE_C_FLAGS} ${MKLDNN_FLAG}")
SET(MKLDNN_CXXFLAG "${CMAKE_CXX_FLAGS} ${MKLDNN_FLAG}")
ENDIF(NOT WIN32)
ExternalProject_Add( ExternalProject_Add(
${MKLDNN_PROJECT} ${MKLDNN_PROJECT}
${EXTERNAL_PROJECT_LOG_ARGS} ${EXTERNAL_PROJECT_LOG_ARGS}
@ -58,8 +61,15 @@ ExternalProject_Add(
UPDATE_COMMAND "" UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER} CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
CMAKE_ARGS -DCMAKE_CXX_FLAGS_RELEASE=${CMAKE_CXX_FLAGS_RELEASE}
CMAKE_ARGS -DCMAKE_CXX_FLAGS_DEBUG=${CMAKE_CXX_FLAGS_DEBUG}
CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
CMAKE_ARGS -DCMAKE_C_FLAGS_DEBUG=${CMAKE_C_FLAGS_DEBUG}
CMAKE_ARGS -DCMAKE_C_FLAGS_RELEASE=${CMAKE_C_FLAGS_RELEASE}
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR} CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR}
CMAKE_ARGS -DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE} CMAKE_ARGS -DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE}
CMAKE_ARGS -DCMAKE_POSITION_INDEPENDENT_CODE=ON
CMAKE_ARGS -DMKLROOT=${MKLML_ROOT} CMAKE_ARGS -DMKLROOT=${MKLML_ROOT}
CMAKE_ARGS -DCMAKE_C_FLAGS=${MKLDNN_CFLAG} CMAKE_ARGS -DCMAKE_C_FLAGS=${MKLDNN_CFLAG}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${MKLDNN_CXXFLAG} CMAKE_ARGS -DCMAKE_CXX_FLAGS=${MKLDNN_CXXFLAG}
@ -67,6 +77,11 @@ ExternalProject_Add(
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${MKLDNN_INSTALL_DIR} CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${MKLDNN_INSTALL_DIR}
-DMKLROOT:PATH=${MKLML_ROOT} -DMKLROOT:PATH=${MKLML_ROOT}
) )
if(WIN32)
SET(MKLDNN_LIB "${MKLDNN_INSTALL_DIR}/lib/mkldnn.lib" CACHE FILEPATH "mkldnn library." FORCE)
else(WIN32)
SET(MKLDNN_LIB "${MKLDNN_INSTALL_DIR}/lib/libmkldnn.so" CACHE FILEPATH "mkldnn library." FORCE)
endif(WIN32)
ADD_LIBRARY(shared_mkldnn SHARED IMPORTED GLOBAL) ADD_LIBRARY(shared_mkldnn SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET shared_mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIB}) SET_PROPERTY(TARGET shared_mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIB})
@ -85,10 +100,14 @@ ADD_DEPENDENCIES(mkldnn ${MKLDNN_PROJECT})
# copy the real so.0 lib to install dir # copy the real so.0 lib to install dir
# it can be directly contained in wheel or capi # it can be directly contained in wheel or capi
SET(MKLDNN_SHARED_LIB ${MKLDNN_INSTALL_DIR}/libmkldnn.so.0) if(WIN32)
ADD_CUSTOM_COMMAND(OUTPUT ${MKLDNN_SHARED_LIB} SET(MKLDNN_SHARED_LIB ${MKLDNN_INSTALL_DIR}/lib/mkldnn.dll)
COMMAND cp ${MKLDNN_LIB} ${MKLDNN_SHARED_LIB} else(WIN32)
DEPENDS mkldnn) SET(MKLDNN_SHARED_LIB ${MKLDNN_INSTALL_DIR}/libmkldnn.so.0)
ADD_CUSTOM_COMMAND(OUTPUT ${MKLDNN_SHARED_LIB}
COMMAND ${CMAKE_COMMAND} -E copy ${MKLDNN_LIB} ${MKLDNN_SHARED_LIB}
DEPENDS mkldnn)
endif(WIN32)
ADD_CUSTOM_TARGET(mkldnn_shared_lib ALL DEPENDS ${MKLDNN_SHARED_LIB}) ADD_CUSTOM_TARGET(mkldnn_shared_lib ALL DEPENDS ${MKLDNN_SHARED_LIB})
IF(WITH_C_API) IF(WITH_C_API)

@ -16,56 +16,67 @@ IF(NOT ${WITH_MKLML})
return() return()
ENDIF(NOT ${WITH_MKLML}) ENDIF(NOT ${WITH_MKLML})
IF(WIN32 OR APPLE) IF(APPLE)
MESSAGE(WARNING MESSAGE(WARNING
"Windows or Mac is not supported with MKLML in Paddle yet." "Mac is not supported with MKLML in Paddle yet."
"Force WITH_MKLML=OFF") "Force WITH_MKLML=OFF")
SET(WITH_MKLML OFF CACHE STRING "Disable MKLML package in Windows and MacOS" FORCE) SET(WITH_MKLML OFF CACHE STRING "Disable MKLML package in Windows and MacOS" FORCE)
return() return()
ENDIF() ENDIF()
INCLUDE(ExternalProject) INCLUDE(ExternalProject)
SET(MKLML_PROJECT "extern_mklml")
IF((NOT DEFINED MKLML_VER) OR (NOT DEFINED MKLML_URL))
MESSAGE(STATUS "use pre defined download url")
SET(MKLML_VER "mklml_lnx_2019.0.20180710" CACHE STRING "" FORCE)
SET(MKLML_URL "http://paddlepaddledeps.cdn.bcebos.com/${MKLML_VER}.tgz" CACHE STRING "" FORCE)
ENDIF()
MESSAGE(STATUS "MKLML_VER: ${MKLML_VER}, MKLML_URL: ${MKLML_URL}")
SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml")
SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}")
SET(MKLML_DST_DIR "mklml") SET(MKLML_DST_DIR "mklml")
SET(MKLML_INSTALL_ROOT "${THIRD_PARTY_PATH}/install") SET(MKLML_INSTALL_ROOT "${THIRD_PARTY_PATH}/install")
SET(MKLML_INSTALL_DIR ${MKLML_INSTALL_ROOT}/${MKLML_DST_DIR}) SET(MKLML_INSTALL_DIR ${MKLML_INSTALL_ROOT}/${MKLML_DST_DIR})
SET(MKLML_ROOT ${MKLML_INSTALL_DIR}) SET(MKLML_ROOT ${MKLML_INSTALL_DIR})
SET(MKLML_INC_DIR ${MKLML_ROOT}/include) SET(MKLML_INC_DIR ${MKLML_ROOT}/include)
SET(MKLML_LIB_DIR ${MKLML_ROOT}/lib) SET(MKLML_LIB_DIR ${MKLML_ROOT}/lib)
SET(MKLML_LIB ${MKLML_LIB_DIR}/libmklml_intel.so) if(WIN32)
SET(MKLML_IOMP_LIB ${MKLML_LIB_DIR}/libiomp5.so) SET(MKLML_LIB ${MKLML_LIB_DIR}/mklml.lib)
SET(MKLML_IOMP_LIB ${MKLML_LIB_DIR}/libiomp5md.lib)
SET(MKLML_SHARED_LIB ${MKLML_LIB_DIR}/mklml.dll)
SET(MKLML_SHARED_IOMP_LIB ${MKLML_LIB_DIR}/libiomp5md.dll)
else()
SET(MKLML_LIB ${MKLML_LIB_DIR}/libmklml_intel.so)
SET(MKLML_IOMP_LIB ${MKLML_LIB_DIR}/libiomp5.so)
SET(MKLML_SHARED_LIB ${MKLML_LIB_DIR}/libmklml_intel.so)
SET(MKLML_SHARED_IOMP_LIB ${MKLML_LIB_DIR}/libiomp5.so)
endif()
SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLML_ROOT}/lib") SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${MKLML_ROOT}/lib")
INCLUDE_DIRECTORIES(${MKLML_INC_DIR}) IF((NOT DEFINED MKLML_VER) OR (NOT DEFINED MKLML_URL))
MESSAGE(STATUS "use pre defined download url")
if(WIN32)
SET(MKLML_VER "mklml_win_2019.0.20180710" CACHE STRING "" FORCE)
SET(MKLML_URL "https://paddlepaddledeps.cdn.bcebos.com/${MKLML_VER}.zip" CACHE STRING "" FORCE)
else()
SET(MKLML_VER "mklml_lnx_2019.0.20180710" CACHE STRING "" FORCE)
SET(MKLML_URL "http://paddlepaddledeps.cdn.bcebos.com/${MKLML_VER}.tgz" CACHE STRING "" FORCE)
ENDIF()
endif()
FILE(WRITE ${MKLML_DOWNLOAD_DIR}/CMakeLists.txt SET(MKLML_PROJECT "extern_mklml")
"PROJECT(MKLML)\n" MESSAGE(STATUS "MKLML_VER: ${MKLML_VER}, MKLML_URL: ${MKLML_URL}")
"cmake_minimum_required(VERSION 3.0)\n" SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml")
"install(DIRECTORY ${MKLML_VER}/include ${MKLML_VER}/lib \n" SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}")
" DESTINATION ${MKLML_DST_DIR})\n")
ExternalProject_Add( ExternalProject_Add(
${MKLML_PROJECT} ${MKLML_PROJECT}
${EXTERNAL_PROJECT_LOG_ARGS} ${EXTERNAL_PROJECT_LOG_ARGS}
PREFIX ${MKLML_SOURCE_DIR} PREFIX ${MKLML_SOURCE_DIR}
URL ${MKLML_URL}
DOWNLOAD_DIR ${MKLML_DOWNLOAD_DIR} DOWNLOAD_DIR ${MKLML_DOWNLOAD_DIR}
DOWNLOAD_COMMAND wget --no-check-certificate ${MKLML_URL} -c -q -O ${MKLML_VER}.tgz
&& tar zxf ${MKLML_VER}.tgz
DOWNLOAD_NO_PROGRESS 1 DOWNLOAD_NO_PROGRESS 1
UPDATE_COMMAND "" CONFIGURE_COMMAND ""
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLML_INSTALL_ROOT} BUILD_COMMAND ""
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${MKLML_INSTALL_ROOT} UPDATE_COMMAND ""
INSTALL_COMMAND
${CMAKE_COMMAND} -E copy_directory ${MKLML_DOWNLOAD_DIR}/include ${MKLML_INC_DIR} &&
${CMAKE_COMMAND} -E copy_directory ${MKLML_DOWNLOAD_DIR}/lib ${MKLML_LIB_DIR}
) )
INCLUDE_DIRECTORIES(${MKLML_INC_DIR})
ADD_LIBRARY(mklml SHARED IMPORTED GLOBAL) ADD_LIBRARY(mklml SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET mklml PROPERTY IMPORTED_LOCATION ${MKLML_LIB}) SET_PROPERTY(TARGET mklml PROPERTY IMPORTED_LOCATION ${MKLML_LIB})
ADD_DEPENDENCIES(mklml ${MKLML_PROJECT}) ADD_DEPENDENCIES(mklml ${MKLML_PROJECT})

@ -267,7 +267,11 @@ function(cc_library TARGET_NAME)
list(APPEND cc_library_DEPS dynload_mklml) list(APPEND cc_library_DEPS dynload_mklml)
endif() endif()
add_dependencies(${TARGET_NAME} mklml) add_dependencies(${TARGET_NAME} mklml)
target_link_libraries(${TARGET_NAME} "-L${MKLML_LIB_DIR} -liomp5 -Wl,--as-needed") if(WIN32)
target_link_libraries(${TARGET_NAME} ${MKLML_IOMP_LIB})
else(WIN32)
target_link_libraries(${TARGET_NAME} "-L${MKLML_LIB_DIR} -liomp5 -Wl,--as-needed")
endif(WIN32)
endif() endif()
# remove link to python, see notes at: # remove link to python, see notes at:
# https://github.com/pybind/pybind11/blob/master/docs/compiling.rst#building-manually # https://github.com/pybind/pybind11/blob/master/docs/compiling.rst#building-manually

@ -115,20 +115,20 @@ if (NOT PROTOBUF_FOUND OR WIN32)
) )
endif () endif ()
if (NOT CBLAS_FOUND) if (WITH_MKLML)
set(dst_dir "${FLUID_INSTALL_DIR}/third_party/install/openblas")
copy(openblas_lib
SRCS ${CBLAS_INSTALL_DIR}/lib ${CBLAS_INSTALL_DIR}/include
DSTS ${dst_dir} ${dst_dir}
DEPS extern_openblas
)
elseif (WITH_MKLML)
set(dst_dir "${FLUID_INSTALL_DIR}/third_party/install/mklml") set(dst_dir "${FLUID_INSTALL_DIR}/third_party/install/mklml")
copy(mklml_lib copy(mklml_lib
SRCS ${MKLML_LIB} ${MKLML_IOMP_LIB} ${MKLML_INC_DIR} SRCS ${MKLML_LIB} ${MKLML_IOMP_LIB} ${MKLML_INC_DIR}
DSTS ${dst_dir}/lib ${dst_dir}/lib ${dst_dir} DSTS ${dst_dir}/lib ${dst_dir}/lib ${dst_dir}
DEPS mklml DEPS mklml
) )
elseif (NOT CBLAS_FOUND OR WIN32)
set(dst_dir "${FLUID_INSTALL_DIR}/third_party/install/openblas")
copy(openblas_lib
SRCS ${CBLAS_INSTALL_DIR}/lib ${CBLAS_INSTALL_DIR}/include
DSTS ${dst_dir} ${dst_dir}
DEPS extern_openblas
)
endif () endif ()
if (WITH_MKLDNN) if (WITH_MKLDNN)

@ -57,46 +57,43 @@ int main()
return 0; return 0;
}" SSE3_FOUND) }" SSE3_FOUND)
# disable AVX by default on windows # Check AVX
if(NOT WIN32) set(CMAKE_REQUIRED_FLAGS ${AVX_FLAG})
# Check AVX set(AVX_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
set(CMAKE_REQUIRED_FLAGS ${AVX_FLAG}) CHECK_CXX_SOURCE_RUNS("
set(AVX_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE) #include <immintrin.h>
CHECK_CXX_SOURCE_RUNS(" int main()
#include <immintrin.h> {
int main() __m256 a = _mm256_set_ps (-1.0f, 2.0f, -3.0f, 4.0f, -1.0f, 2.0f, -3.0f, 4.0f);
{ __m256 b = _mm256_set_ps (1.0f, 2.0f, 3.0f, 4.0f, 1.0f, 2.0f, 3.0f, 4.0f);
__m256 a = _mm256_set_ps (-1.0f, 2.0f, -3.0f, 4.0f, -1.0f, 2.0f, -3.0f, 4.0f); __m256 result = _mm256_add_ps (a, b);
__m256 b = _mm256_set_ps (1.0f, 2.0f, 3.0f, 4.0f, 1.0f, 2.0f, 3.0f, 4.0f); return 0;
__m256 result = _mm256_add_ps (a, b); }" AVX_FOUND)
return 0;
}" AVX_FOUND)
# Check AVX 2 # Check AVX 2
set(CMAKE_REQUIRED_FLAGS ${AVX2_FLAG}) set(CMAKE_REQUIRED_FLAGS ${AVX2_FLAG})
set(AVX2_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE) set(AVX2_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS(" CHECK_CXX_SOURCE_RUNS("
#include <immintrin.h> #include <immintrin.h>
int main() int main()
{ {
__m256i a = _mm256_set_epi32 (-1, 2, -3, 4, -1, 2, -3, 4); __m256i a = _mm256_set_epi32 (-1, 2, -3, 4, -1, 2, -3, 4);
__m256i result = _mm256_abs_epi32 (a); __m256i result = _mm256_abs_epi32 (a);
return 0; return 0;
}" AVX2_FOUND) }" AVX2_FOUND)
# Check AVX512F # Check AVX512F
set(CMAKE_REQUIRED_FLAGS ${AVX512F_FLAG}) set(CMAKE_REQUIRED_FLAGS ${AVX512F_FLAG})
set(AVX512F_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE) set(AVX512F_FOUND_EXITCODE 1 CACHE STRING "Result from TRY_RUN" FORCE)
CHECK_CXX_SOURCE_RUNS(" CHECK_CXX_SOURCE_RUNS("
#include <immintrin.h> #include <immintrin.h>
int main() int main()
{ {
__m512i a = _mm512_set_epi32 (-1, 2, -3, 4, -1, 2, -3, 4, __m512i a = _mm512_set_epi32 (-1, 2, -3, 4, -1, 2, -3, 4,
13, -5, 6, -7, 9, 2, -6, 3); 13, -5, 6, -7, 9, 2, -6, 3);
__m512i result = _mm512_abs_epi32 (a); __m512i result = _mm512_abs_epi32 (a);
return 0; return 0;
}" AVX512F_FOUND) }" AVX512F_FOUND)
endif(NOT WIN32)
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_RETAINED}) set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_RETAINED})
mark_as_advanced(MMX_FOUND SSE2_FOUND SSE3_FOUND AVX_FOUND AVX2_FOUND AVX512F_FOUND) mark_as_advanced(MMX_FOUND SSE2_FOUND SSE3_FOUND AVX_FOUND AVX2_FOUND AVX512F_FOUND)

@ -60,7 +60,7 @@ class Float16Transpiler:
raise TypeError("place should be as CPUPlace/CUDAPlace type") raise TypeError("place should be as CPUPlace/CUDAPlace type")
if scope is None: if scope is None:
scope = global_scope() scope = global_scope()
if not isinstance(scope, core.Scope): if not isinstance(scope, core._Scope):
raise TypeError("scope should be as Scope type or None") raise TypeError("scope should be as Scope type or None")
self.scope = scope self.scope = scope

@ -208,6 +208,7 @@ paddle.fluid.layers.bilinear_tensor_product ArgSpec(args=['x', 'y', 'size', 'act
paddle.fluid.layers.merge_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.merge_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.get_tensor_from_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.get_tensor_from_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.lstm ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1)) paddle.fluid.layers.lstm ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1))
paddle.fluid.layers.py_func ArgSpec(args=['func', 'x', 'out', 'backward_func', 'skip_vars_in_backward_input'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.psroi_pool ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.psroi_pool ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.huber_loss ArgSpec(args=['input', 'label', 'delta'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.huber_loss ArgSpec(args=['input', 'label', 'delta'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True)) paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
@ -350,6 +351,23 @@ paddle.fluid.contrib.QuantizeTranspiler.__init__ ArgSpec(args=['self', 'weight_b
paddle.fluid.contrib.QuantizeTranspiler.convert_to_int8 ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.contrib.QuantizeTranspiler.convert_to_int8 ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.QuantizeTranspiler.freeze_program ArgSpec(args=['self', 'program', 'place', 'fuse_bn', 'scope'], varargs=None, keywords=None, defaults=(False, None)) paddle.fluid.contrib.QuantizeTranspiler.freeze_program ArgSpec(args=['self', 'program', 'place', 'fuse_bn', 'scope'], varargs=None, keywords=None, defaults=(False, None))
paddle.fluid.contrib.QuantizeTranspiler.training_transpile ArgSpec(args=['self', 'program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None)) paddle.fluid.contrib.QuantizeTranspiler.training_transpile ArgSpec(args=['self', 'program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.contrib.build_compressor ArgSpec(args=['place', 'data_reader', 'data_feeder', 'scope', 'metrics', 'epoch', 'config'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None))
paddle.fluid.contrib.CompressPass.__init__ ArgSpec(args=['self', 'place', 'data_reader', 'data_feeder', 'scope', 'metrics', 'epoch', 'program_exe'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None))
paddle.fluid.contrib.CompressPass.add_strategy ArgSpec(args=['self', 'strategy'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.CompressPass.apply ArgSpec(args=['self', 'graph'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.ImitationGraph.__init__ ArgSpec(args=['self', 'program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.ImitationGraph.all_parameters ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.SensitivePruneStrategy.__init__ ArgSpec(args=['self', 'pruner', 'start_epoch', 'end_epoch', 'delta_rate', 'acc_loss_threshold', 'sensitivities'], varargs=None, keywords=None, defaults=(None, 0, 10, 0.2, 0.2, None))
paddle.fluid.contrib.SensitivePruneStrategy.on_batch_begin ArgSpec(args=['self', 'context'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.SensitivePruneStrategy.on_batch_end ArgSpec(args=['self', 'context'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.SensitivePruneStrategy.on_compress_begin ArgSpec(args=['self', 'context'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.SensitivePruneStrategy.on_compress_end ArgSpec(args=['self', 'context'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.SensitivePruneStrategy.on_epoch_begin ArgSpec(args=['self', 'context'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.SensitivePruneStrategy.on_epoch_end ArgSpec(args=['self', 'context'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.MagnitudePruner.__init__ ArgSpec(args=['self', 'threshold'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.MagnitudePruner.prune ArgSpec(args=['self', 'param', 'threshold'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.RatioPruner.__init__ ArgSpec(args=['self', 'ratios'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.RatioPruner.prune ArgSpec(args=['self', 'param', 'ratio'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.load_persistables_for_increment ArgSpec(args=['dirname', 'executor', 'program', 'lookup_table_var', 'lookup_table_var_path'], varargs=None, keywords=None, defaults=None) paddle.fluid.contrib.load_persistables_for_increment ArgSpec(args=['dirname', 'executor', 'program', 'lookup_table_var', 'lookup_table_var_path'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.load_persistables_for_inference ArgSpec(args=['dirname', 'executor', 'program', 'lookup_table_var_name'], varargs=None, keywords=None, defaults=None) paddle.fluid.contrib.load_persistables_for_inference ArgSpec(args=['dirname', 'executor', 'program', 'lookup_table_var_name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.convert_dist_to_sparse_program ArgSpec(args=['program'], varargs=None, keywords=None, defaults=None) paddle.fluid.contrib.convert_dist_to_sparse_program ArgSpec(args=['program'], varargs=None, keywords=None, defaults=None)
@ -446,11 +464,7 @@ paddle.fluid.unique_name.switch ArgSpec(args=['new_generator'], varargs=None, ke
paddle.fluid.unique_name.guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) paddle.fluid.unique_name.guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.recordio_writer.convert_reader_to_recordio_file ArgSpec(args=['filename', 'reader_creator', 'feeder', 'compressor', 'max_num_records', 'feed_order'], varargs=None, keywords=None, defaults=(Compressor.Snappy, 1000, None)) paddle.fluid.recordio_writer.convert_reader_to_recordio_file ArgSpec(args=['filename', 'reader_creator', 'feeder', 'compressor', 'max_num_records', 'feed_order'], varargs=None, keywords=None, defaults=(Compressor.Snappy, 1000, None))
paddle.fluid.recordio_writer.convert_reader_to_recordio_files ArgSpec(args=['filename', 'batch_per_file', 'reader_creator', 'feeder', 'compressor', 'max_num_records', 'feed_order'], varargs=None, keywords=None, defaults=(Compressor.Snappy, 1000, None)) paddle.fluid.recordio_writer.convert_reader_to_recordio_files ArgSpec(args=['filename', 'batch_per_file', 'reader_creator', 'feeder', 'compressor', 'max_num_records', 'feed_order'], varargs=None, keywords=None, defaults=(Compressor.Snappy, 1000, None))
paddle.fluid.Scope.__init__ __init__(self: paddle.fluid.core.Scope) -> None paddle.fluid.Scope Scope() -> paddle.fluid.core._Scope
paddle.fluid.Scope.drop_kids drop_kids(self: paddle.fluid.core.Scope) -> None
paddle.fluid.Scope.find_var find_var(self: paddle.fluid.core.Scope, arg0: unicode) -> paddle.fluid.core.Variable
paddle.fluid.Scope.new_scope new_scope(self: paddle.fluid.core.Scope) -> paddle.fluid.core.Scope
paddle.fluid.Scope.var var(self: paddle.fluid.core.Scope, arg0: unicode) -> paddle.fluid.core.Variable
paddle.reader.map_readers ArgSpec(args=['func'], varargs='readers', keywords=None, defaults=None) paddle.reader.map_readers ArgSpec(args=['func'], varargs='readers', keywords=None, defaults=None)
paddle.reader.buffered ArgSpec(args=['reader', 'size'], varargs=None, keywords=None, defaults=None) paddle.reader.buffered ArgSpec(args=['reader', 'size'], varargs=None, keywords=None, defaults=None)
paddle.reader.compose ArgSpec(args=[], varargs='readers', keywords='kwargs', defaults=None) paddle.reader.compose ArgSpec(args=[], varargs='readers', keywords='kwargs', defaults=None)

@ -7,27 +7,17 @@ function(windows_symbolic TARGET)
cmake_parse_arguments(windows_symbolic "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN}) cmake_parse_arguments(windows_symbolic "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
set(final_path ${CMAKE_CURRENT_SOURCE_DIR}/${windows_symbolic_PATH}) set(final_path ${CMAKE_CURRENT_SOURCE_DIR}/${windows_symbolic_PATH})
foreach(src ${windows_symbolic_SRCS}) foreach(src ${windows_symbolic_SRCS})
get_filename_component(src ${src} NAME_WE) get_filename_component(src ${src} NAME_WE)
if (NOT EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${src}.cc OR NOT EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${src}.cu) if (NOT EXISTS ${final_path}/${src}.cc OR NOT EXISTS ${final_path}/${src}.cu)
message(FATAL " ${src}.cc and ${src}.cu must exsits, and ${src}.cu must be symbolic file.") message(FATAL " ${src}.cc and ${src}.cu must exsits, and ${src}.cu must be symbolic file.")
endif() endif()
#only copy the xx.cu to.xx.cu when the content are modified file(GENERATE OUTPUT ${final_path}/.${src}.cu INPUT ${final_path}/${src}.cc)
set(copy_flag 1)
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/.${src}.cu) add_custom_command(OUTPUT ${final_path}/.${src}.cu
file(READ ${CMAKE_CURRENT_SOURCE_DIR}/${src}.cc SOURCE_STR) COMMAND ${CMAKE_COMMAND} -E copy_if_different "${final_path}/${src}.cc" "${final_path}/.${src}.cu"
file(READ ${CMAKE_CURRENT_SOURCE_DIR}/.${src}.cu TARGET_STR) COMMENT "create hidden file of ${src}.cu")
if (SOURCE_STR STREQUAL TARGET_STR) add_custom_target(${TARGET} ALL DEPENDS .${src}.cu)
set(copy_flag 0)
endif()
endif()
if (copy_flag)
add_custom_command(OUTPUT .${src}.cu
COMMAND ${CMAKE_COMMAND} -E remove ${CMAKE_CURRENT_SOURCE_DIR}/.${src}.cu
COMMAND ${CMAKE_COMMAND} -E copy "${CMAKE_CURRENT_SOURCE_DIR}/${src}.cc" "${CMAKE_CURRENT_SOURCE_DIR}/.${src}.cu"
COMMENT "create hidden file of ${src}.cu")
endif(copy_flag)
add_custom_target(${TARGET} ALL DEPENDS .${src}.cu)
endforeach() endforeach()
endfunction() endfunction()
@ -48,10 +38,10 @@ if(WITH_GPU)
nv_library(tensor SRCS tensor.cc .tensor_util.cu DEPS place memory data_type device_context) nv_library(tensor SRCS tensor.cc .tensor_util.cu DEPS place memory data_type device_context)
add_dependencies(tensor tensor_util) add_dependencies(tensor tensor_util)
else() else()
nv_library(tensor SRCS tensor.cc tensor_util.cu DEPS place memory data_type device_context) nv_library(tensor SRCS tensor.cc tensor_util.cu DEPS place memory data_type device_context )
endif(WIN32) endif(WIN32)
else() else()
cc_library(tensor SRCS tensor.cc tensor_util.cc DEPS place memory data_type device_context) cc_library(tensor SRCS tensor.cc tensor_util.cc DEPS place memory data_type device_context )
endif() endif()
cc_test(tensor_test SRCS tensor_test.cc DEPS tensor) cc_test(tensor_test SRCS tensor_test.cc DEPS tensor)
@ -84,6 +74,7 @@ cc_library(threadpool SRCS threadpool.cc DEPS enforce)
cc_test(threadpool_test SRCS threadpool_test.cc DEPS threadpool) cc_test(threadpool_test SRCS threadpool_test.cc DEPS threadpool)
cc_library(scope SRCS scope.cc DEPS glog threadpool) cc_library(scope SRCS scope.cc DEPS glog threadpool)
cc_library(scope_pool SRCS scope_pool.cc DEPS scope)
cc_test(scope_test SRCS scope_test.cc DEPS scope) cc_test(scope_test SRCS scope_test.cc DEPS scope)
cc_library(data_device_transform SRCS data_device_transform.cc DEPS tensor) cc_library(data_device_transform SRCS data_device_transform.cc DEPS tensor)

@ -165,7 +165,7 @@ template <typename T>
class GreaterThanChecker { class GreaterThanChecker {
public: public:
explicit GreaterThanChecker(T lower_bound) : lower_bound_(lower_bound) {} explicit GreaterThanChecker(T lower_bound) : lower_bound_(lower_bound) {}
void operator()(T& value) const { void operator()(const T& value) const {
PADDLE_ENFORCE(value > lower_bound_, "larger_than check fails."); PADDLE_ENFORCE(value > lower_bound_, "larger_than check fails.");
} }
@ -177,7 +177,7 @@ template <typename T>
class EqualGreaterThanChecker { class EqualGreaterThanChecker {
public: public:
explicit EqualGreaterThanChecker(T lower_bound) : lower_bound_(lower_bound) {} explicit EqualGreaterThanChecker(T lower_bound) : lower_bound_(lower_bound) {}
void operator()(T& value) const { void operator()(const T& value) const {
PADDLE_ENFORCE_GE(value, lower_bound_, "equal_larger_than check fails."); PADDLE_ENFORCE_GE(value, lower_bound_, "equal_larger_than check fails.");
} }
@ -193,7 +193,7 @@ class DefaultValueSetter {
public: public:
explicit DefaultValueSetter(T default_value) explicit DefaultValueSetter(T default_value)
: default_value_(default_value) {} : default_value_(default_value) {}
void operator()(T& value) const { value = default_value_; } // NOLINT void operator()(T* value) const { *value = default_value_; }
private: private:
T default_value_; T default_value_;
@ -203,7 +203,7 @@ template <typename T>
class EnumInContainer { class EnumInContainer {
public: public:
explicit EnumInContainer(const std::unordered_set<T>& c) : container_(c) {} explicit EnumInContainer(const std::unordered_set<T>& c) : container_(c) {}
void operator()(T& val) const { void operator()(const T& val) const {
PADDLE_ENFORCE(container_.find(val) != container_.end(), PADDLE_ENFORCE(container_.find(val) != container_.end(),
"Value %s is not in enum container %s", val, "Value %s is not in enum container %s", val,
ContainerDebugString()); ContainerDebugString());
@ -232,7 +232,8 @@ class EnumInContainer {
// an attribute can have more than one limits // an attribute can have more than one limits
template <typename T> template <typename T>
class TypedAttrChecker { class TypedAttrChecker {
typedef std::function<void(T&)> ValueChecker; typedef std::function<void(T*)> DefaultValueChecker;
typedef std::function<void(const T&)> ValueChecker;
public: public:
explicit TypedAttrChecker(const std::string& attr_name) explicit TypedAttrChecker(const std::string& attr_name)
@ -268,17 +269,17 @@ class TypedAttrChecker {
return *this; return *this;
} }
void operator()(AttributeMap& attr_map) const { // NOLINT void operator()(AttributeMap* attr_map) const {
if (!attr_map.count(attr_name_)) { if (!attr_map->count(attr_name_)) {
// user do not set this attr // user do not set this attr
PADDLE_ENFORCE(!default_value_setter_.empty(), PADDLE_ENFORCE(!default_value_setter_.empty(),
"Attribute '%s' is required!", attr_name_); "Attribute '%s' is required!", attr_name_);
// default_value_setter_ has no more than one element // default_value_setter_ has no more than one element
T val; T val;
(default_value_setter_[0])(val); (default_value_setter_[0])(&val);
attr_map[attr_name_] = val; (*attr_map)[attr_name_] = val;
} }
Attribute& attr = attr_map.at(attr_name_); Attribute& attr = attr_map->at(attr_name_);
ExtractAttribute<T> extract_attr(attr_name_); ExtractAttribute<T> extract_attr(attr_name_);
T* attr_value = extract_attr(attr); T* attr_value = extract_attr(attr);
for (const auto& checker : value_checkers_) { for (const auto& checker : value_checkers_) {
@ -289,12 +290,12 @@ class TypedAttrChecker {
private: private:
std::string attr_name_; std::string attr_name_;
std::vector<ValueChecker> value_checkers_; std::vector<ValueChecker> value_checkers_;
std::vector<ValueChecker> default_value_setter_; std::vector<DefaultValueChecker> default_value_setter_;
}; };
// check whether op's all attributes fit their own limits // check whether op's all attributes fit their own limits
class OpAttrChecker { class OpAttrChecker {
typedef std::function<void(AttributeMap&)> AttrChecker; typedef std::function<void(AttributeMap*)> AttrChecker;
public: public:
template <typename T> template <typename T>
@ -304,7 +305,7 @@ class OpAttrChecker {
return *(checker.target<TypedAttrChecker<T>>()); return *(checker.target<TypedAttrChecker<T>>());
} }
void Check(AttributeMap& attr_map) const { // NOLINT void Check(AttributeMap* attr_map) const {
for (const auto& checker : attr_checkers_) { for (const auto& checker : attr_checkers_) {
checker(attr_map); checker(attr_map);
} }

@ -120,6 +120,7 @@ FeedFetchList FastThreadedSSAGraphExecutor::Run(
ClearFetchOp(graph_.get(), &fetch_ops); ClearFetchOp(graph_.get(), &fetch_ops);
return fetches; return fetches;
} }
void FastThreadedSSAGraphExecutor::RunOpAsync( void FastThreadedSSAGraphExecutor::RunOpAsync(
std::unordered_map<OpHandleBase *, std::atomic<int>> *op_deps, std::unordered_map<OpHandleBase *, std::atomic<int>> *op_deps,
OpHandleBase *op, OpHandleBase *op,

@ -355,7 +355,9 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
BuildStrategy::GradientScaleStrategy::kCustomized) { BuildStrategy::GradientScaleStrategy::kCustomized) {
// TODO(paddle-dev): Why is there no input for this op_handle? // TODO(paddle-dev): Why is there no input for this op_handle?
auto loss_grad_name = node->Op()->OutputArgumentNames()[0]; auto loss_grad_name = node->Op()->OutputArgumentNames()[0];
CreateScaleLossGradOp(&result, loss_grad_name, node->outputs[0]); auto out_dtype = all_vars_.at(loss_grad_name)->GetDataType();
CreateScaleLossGradOp(&result, loss_grad_name, node->outputs[0],
out_dtype);
} }
// This assumes the backward generating code will ensure IsScaleLossOp // This assumes the backward generating code will ensure IsScaleLossOp
// is true only for the op that scale the final scalar loss. // is true only for the op that scale the final scalar loss.
@ -658,13 +660,13 @@ int MultiDevSSAGraphBuilder::GetVarDeviceID(
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp( void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(
ir::Graph *result, const std::string &loss_grad_name, ir::Graph *result, const std::string &loss_grad_name,
ir::Node *out_var_node) const { ir::Node *out_var_node, proto::VarType::Type dtype) const {
for (size_t i = 0; i < places_.size(); ++i) { for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle // Insert ScaleCost OpHandle
auto *dev_ctx = platform::DeviceContextPool::Instance().Get(places_[i]); auto *dev_ctx = platform::DeviceContextPool::Instance().Get(places_[i]);
auto *op_handle = new ScaleLossGradOpHandle( auto *op_handle = new ScaleLossGradOpHandle(
result->CreateEmptyNode("scale_loss_grad", ir::Node::Type::kOperation), result->CreateEmptyNode("scale_loss_grad", ir::Node::Type::kOperation),
local_scopes_.size(), local_scopes_[i], places_[i], dev_ctx); local_scopes_.size(), local_scopes_[i], places_[i], dev_ctx, dtype);
result->Get<GraphOps>(kGraphOps).emplace_back(op_handle); result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
// FIXME: Currently ScaleLossGradOp only use device_count as scale // FIXME: Currently ScaleLossGradOp only use device_count as scale

@ -68,7 +68,8 @@ class MultiDevSSAGraphBuilder : public ir::Pass {
void CreateScaleLossGradOp(ir::Graph *result, void CreateScaleLossGradOp(ir::Graph *result,
const std::string &loss_grad_name, const std::string &loss_grad_name,
ir::Node *out_var_node) const; ir::Node *out_var_node,
proto::VarType::Type dtype) const;
VarHandle *CreateReduceOp(ir::Graph *result, const std::string &og, VarHandle *CreateReduceOp(ir::Graph *result, const std::string &og,
int dst_dev_id) const; int dst_dev_id) const;

@ -22,39 +22,66 @@ namespace details {
ScaleLossGradOpHandle::ScaleLossGradOpHandle(ir::Node *node, size_t num_dev, ScaleLossGradOpHandle::ScaleLossGradOpHandle(ir::Node *node, size_t num_dev,
Scope *scope, Scope *scope,
platform::Place place, platform::Place place,
platform::DeviceContext *dev_ctx) platform::DeviceContext *dev_ctx,
proto::VarType::Type dtype)
: OpHandleBase(node), : OpHandleBase(node),
coeff_(static_cast<float>(1.0 / num_dev)), coeff_(static_cast<float>(1.0 / num_dev)),
scope_(scope), scope_(scope),
place_(place) { place_(place),
out_dtype_(dtype) {
this->SetDeviceContext(place_, dev_ctx); this->SetDeviceContext(place_, dev_ctx);
} }
ScaleLossGradOpHandle::~ScaleLossGradOpHandle() {} ScaleLossGradOpHandle::~ScaleLossGradOpHandle() {}
struct ScaleLossGradFunctor {
float coeff_;
Tensor *out_;
platform::Place place_;
OpHandleBase *op_handle_;
proto::VarType::Type out_dtype_;
platform::DeviceContext *ctx_;
ScaleLossGradFunctor(float coeff, Tensor *out, platform::Place place,
OpHandleBase *op_handle, proto::VarType::Type dtype,
platform::DeviceContext *ctx)
: coeff_(coeff), out_(out), place_(place), out_dtype_(dtype), ctx_(ctx) {}
template <typename OutT>
void apply() const {
auto *out_data = out_->mutable_data<OutT>(place_);
if (platform::is_cpu_place(place_)) {
*out_data = static_cast<OutT>(coeff_);
} else {
#ifdef PADDLE_WITH_CUDA
OutT cast_coeff = static_cast<OutT>(coeff_);
auto stream = static_cast<platform::CUDADeviceContext *>(ctx_)->stream();
memory::Copy(boost::get<platform::CUDAPlace>(place_), out_data,
platform::CPUPlace(), &cast_coeff, SizeOfType(out_dtype_),
stream);
VLOG(10) << place_ << "RUN Scale loss grad op";
#endif
}
}
};
void ScaleLossGradOpHandle::RunImpl() { void ScaleLossGradOpHandle::RunImpl() {
// Doesn't wait any event // Doesn't wait any event
std::string var_name = static_cast<VarHandle *>(this->outputs_[0])->name_; std::string var_name = static_cast<VarHandle *>(this->outputs_[0])->name_;
auto &local_scope = *scope_->FindVar(kLocalExecScopeName)->Get<Scope *>(); auto &local_scope = *scope_->FindVar(kLocalExecScopeName)->Get<Scope *>();
float *tmp = local_scope.FindVar(var_name) auto *tensor = local_scope.FindVar(var_name)->GetMutable<LoDTensor>();
->GetMutable<LoDTensor>() tensor->Resize(make_ddim({1}));
->mutable_data<float>(make_ddim({1}), place_);
if (platform::is_cpu_place(place_)) {
*tmp = coeff_;
} else {
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
this->RunAndRecordEvent([&] { ScaleLossGradFunctor func(coeff_, tensor, place_, this, out_dtype_,
auto stream = static_cast<platform::CUDADeviceContext *>( this->dev_ctxes_.at(place_));
this->dev_ctxes_.at(place_)) this->RunAndRecordEvent([&] { framework::VisitDataType(out_dtype_, func); });
->stream(); #else
memory::Copy(boost::get<platform::CUDAPlace>(place_), tmp, ScaleLossGradFunctor func(coeff_, tensor, place_, this, out_dtype_, nullptr);
platform::CPUPlace(), &coeff_, sizeof(float), stream); framework::VisitDataType(out_dtype_, func);
VLOG(10) << place_ << "RUN Scale loss grad op";
});
#endif #endif
}
} }
std::string ScaleLossGradOpHandle::Name() const { return "Scale LossGrad"; } std::string ScaleLossGradOpHandle::Name() const { return "Scale LossGrad"; }

@ -26,8 +26,8 @@ namespace details {
struct ScaleLossGradOpHandle : public OpHandleBase { struct ScaleLossGradOpHandle : public OpHandleBase {
ScaleLossGradOpHandle(ir::Node *node, size_t num_dev, Scope *scope, ScaleLossGradOpHandle(ir::Node *node, size_t num_dev, Scope *scope,
platform::Place place, platform::Place place, platform::DeviceContext *context,
platform::DeviceContext *context); proto::VarType::Type dtype);
~ScaleLossGradOpHandle() final; ~ScaleLossGradOpHandle() final;
@ -40,6 +40,7 @@ struct ScaleLossGradOpHandle : public OpHandleBase {
float coeff_; float coeff_;
Scope *scope_; Scope *scope_;
platform::Place place_; platform::Place place_;
proto::VarType::Type out_dtype_;
}; };
} // namespace details } // namespace details

@ -40,18 +40,20 @@ framework::proto::OpDesc PrepareOpDesc(
const std::string& output) { const std::string& output) {
auto proto = base_desc; auto proto = base_desc;
framework::OpDesc desc(proto, nullptr); framework::OpDesc desc(proto, nullptr);
desc.SetType("conv2d_fusion");
desc.SetInput("Bias", {bias}); desc.SetInput("Bias", {bias});
desc.SetInput("ResidualData", {bias1}); desc.SetInput("ResidualData", {bias1});
desc.SetAttr("activation", activation); desc.SetAttr("activation", activation);
desc.SetOutput("Output", {output}); desc.SetOutput("Output", {output});
desc.SetAttr("is_test", true); desc.SetAttr("is_test", true);
desc.SetAttr("use_cudnn", false);
desc.Flush();
return *desc.Proto(); return *desc.Proto();
} }
std::unique_ptr<ir::Graph> ConvElementwiseAdd2ActFusePass::ApplyImpl( std::unique_ptr<ir::Graph> ConvElementwiseAdd2ActFusePass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const { std::unique_ptr<ir::Graph> graph) const {
const std::string pattern_name = "conv_elementwise_add_act_fuse"; const std::string pattern_name = "conv_elementwise_add2_act_fuse";
FusePassBase::Init(pattern_name, graph.get()); FusePassBase::Init(pattern_name, graph.get());
GraphPatternDetector gpd; GraphPatternDetector gpd;
@ -76,22 +78,23 @@ std::unique_ptr<ir::Graph> ConvElementwiseAdd2ActFusePass::ApplyImpl(
framework::OpDesc new_op_desc(new_op_proto, nullptr); framework::OpDesc new_op_desc(new_op_proto, nullptr);
// Create a new node for the fused op. // Create a new node for the fused op.
graph->CreateOpNode(&new_op_desc); auto* new_conv_op = graph->CreateOpNode(&new_op_desc);
// Link inputs and outputs. // Link inputs and outputs.
PADDLE_ENFORCE(subgraph.count(x)); PADDLE_ENFORCE(subgraph.count(x));
auto* conv_in_node = subgraph.at(x); auto* conv_in_node = subgraph.at(x);
IR_NODE_LINK_TO(conv_in_node, conv_op); // Input IR_NODE_LINK_TO(conv_in_node, new_conv_op); // Input
IR_NODE_LINK_TO(conv_filter, conv_op); // Filter IR_NODE_LINK_TO(conv_filter, new_conv_op); // Filter
IR_NODE_LINK_TO(conv_op, conv_out); // Output IR_NODE_LINK_TO(elementwise_add_in_y, new_conv_op); // Bias
IR_NODE_LINK_TO(elementwise_add_in_y, conv_op); // Bias IR_NODE_LINK_TO(elementwise_add_in_y_1, new_conv_op); // Bias
IR_NODE_LINK_TO(elementwise_add_in_y_1, conv_op); // Bias IR_NODE_LINK_TO(new_conv_op, act_out); // Output
// Delete the unneeded nodes. // Delete the unneeded nodes.
GraphSafeRemoveNodes(graph.get(), GraphSafeRemoveNodes(
{conv_op, elementwise_add_op, elementwise_add_op_1, graph.get(),
elementwise_add_out}); {conv_op, conv_out, elementwise_add_op, elementwise_add_op_1,
elementwise_add_out, elementwise_add_out_1, act_op});
}; };
gpd(graph.get(), handler); gpd(graph.get(), handler);
return graph; return graph;

@ -1101,9 +1101,7 @@ PDNode *patterns::ElementwiseAdd::operator()(PDNode *x_var, PDNode *y_var) {
return out_var; return out_var;
} }
std::unordered_set<std::string> conv_act_set({"identity", "sigmoid", "relu", std::unordered_set<std::string> conv_act_set({"identity", "relu"});
"relu6", "relux", "tanh",
"band_pass"});
PDNode *patterns::ConvElementwiseaddAct::operator()(PDNode *conv_in) { PDNode *patterns::ConvElementwiseaddAct::operator()(PDNode *conv_in) {
conv_in->AsInput(); conv_in->AsInput();
@ -1169,13 +1167,13 @@ PDNode *patterns::ConvElementwiseadd2Act::operator()(PDNode *conv_in) {
->AsInput(); ->AsInput();
auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr()) auto elementwise_add_out = pattern->NewNode(elementwise_add_out_repr())
->assert_is_op_output("elementwise_add") ->assert_is_op_output("elementwise_add")
->assert_is_op_input("elementwise_add", "X") ->assert_is_op_input("elementwise_add", "Y")
->AsIntermediate(); ->AsIntermediate();
auto elementwise_add_op_1 = pattern->NewNode(elementwise_add_op_1_repr()) auto elementwise_add_op_1 = pattern->NewNode(elementwise_add_op_1_repr())
->assert_is_op("elementwise_add"); ->assert_is_op("elementwise_add");
auto elementwise_add_in_y_1 = pattern->NewNode(elementwise_add_in_y_1_repr()) auto elementwise_add_in_y_1 = pattern->NewNode(elementwise_add_in_y_1_repr())
->assert_is_op_input("elementwise_add", "Y") ->assert_is_op_input("elementwise_add", "X")
->AsInput(); ->AsInput();
auto elementwise_add_out_1 = pattern->NewNode(elementwise_add_out_1_repr()) auto elementwise_add_out_1 = pattern->NewNode(elementwise_add_out_1_repr())
->assert_is_op_output("elementwise_add") ->assert_is_op_output("elementwise_add")
@ -1203,8 +1201,8 @@ PDNode *patterns::ConvElementwiseadd2Act::operator()(PDNode *conv_in) {
conv_op->LinksFrom({conv_in, conv_filter}).LinksTo({conv_out}); conv_op->LinksFrom({conv_in, conv_filter}).LinksTo({conv_out});
elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y}) elementwise_add_op->LinksFrom({conv_out, elementwise_add_in_y})
.LinksTo({elementwise_add_out}); .LinksTo({elementwise_add_out});
elementwise_add_op_1->LinksFrom( elementwise_add_op_1->LinksFrom({elementwise_add_out, elementwise_add_in_y_1})
{elementwise_add_out, elementwise_add_in_y_1}); .LinksTo({elementwise_add_out_1});
act_op->LinksFrom({elementwise_add_out_1}).LinksTo({act_out}); act_op->LinksFrom({elementwise_add_out_1}).LinksTo({act_out});
return act_out; return act_out;
} }

@ -157,13 +157,8 @@ bool CheckLoD(const LoD &in, int tensor_height) {
if (level.size() < 2) return false; if (level.size() < 2) return false;
// check: the first offset(the begin offset) of each level should be 0. // check: the first offset(the begin offset) of each level should be 0.
if (level.front() != 0) return false; if (level.front() != 0) return false;
// check: all the offsets in a level should be ascending(no same items // check: all the offsets in a level should be ascending(allow same items)
// allows). if (!std::is_sorted(level.begin(), level.end())) {
if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
if (a < b) return true;
return false;
})) {
LOG(INFO) << "ascending error";
return false; return false;
} }
} }

@ -217,6 +217,11 @@ TEST(LoD, CheckLoD) {
// check with underlying tensor storage. // check with underlying tensor storage.
ASSERT_TRUE(CheckLoD(relative_lod, 5)); ASSERT_TRUE(CheckLoD(relative_lod, 5));
ASSERT_FALSE(CheckLoD(relative_lod, 9)); ASSERT_FALSE(CheckLoD(relative_lod, 9));
// check whether lod is ascending-sorted (allow same items)
ASSERT_TRUE(CheckLoD({{0, 1, 2, 3, 4, 5}}, 5));
ASSERT_TRUE(CheckLoD({{0, 1, 3, 3, 4, 5}}, 5));
ASSERT_FALSE(CheckLoD({{0, 1, 3, 2, 5}}, 5));
} }
TEST(LoD, CheckAbsLoD) { TEST(LoD, CheckAbsLoD) {

@ -215,8 +215,8 @@ class Vector {
auto stream = dev_ctx->stream(); auto stream = dev_ctx->stream();
void *src = gpu_->ptr(); void *src = gpu_->ptr();
void *dst = cpu_.data(); void *dst = cpu_.data();
memory::Copy(platform::CPUPlace(), dst, CUDAPlace().get(), src, paddle::memory::Copy(platform::CPUPlace(), dst, CUDAPlace().get(), src,
gpu_->size(), stream); gpu_->size(), stream);
dev_ctx->Wait(); dev_ctx->Wait();
} }
@ -261,8 +261,8 @@ class Vector {
auto *dev_ctx = static_cast<platform::CUDADeviceContext *>( auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
platform::DeviceContextPool::Instance().Get(place)); platform::DeviceContextPool::Instance().Get(place));
auto stream = dev_ctx->stream(); auto stream = dev_ctx->stream();
memory::Copy(CUDAPlace().get(), dst, platform::CPUPlace(), src, paddle::memory::Copy(CUDAPlace().get(), dst, platform::CPUPlace(), src,
gpu_->size(), stream); gpu_->size(), stream);
} }
void ImmutableCPU() const { void ImmutableCPU() const {
@ -284,7 +284,7 @@ class Vector {
bool IsInCPU() const { return flag_ & kDataInCPU; } bool IsInCPU() const { return flag_ & kDataInCPU; }
mutable std::vector<T> cpu_; mutable std::vector<T> cpu_;
mutable memory::AllocationPtr gpu_; mutable paddle::memory::AllocationPtr gpu_;
mutable int flag_; mutable int flag_;
mutable std::mutex mtx_; mutable std::mutex mtx_;

@ -31,10 +31,12 @@ std::map<std::string,
std::shared_ptr<std::unordered_map< std::shared_ptr<std::unordered_map<
std::string, std::shared_ptr<ngraph::Node>>>)>> std::string, std::shared_ptr<ngraph::Node>>>)>>
NgraphBridge::NG_NODE_MAP = { NgraphBridge::NG_NODE_MAP = {
{"fill_constant", paddle::operators::ngraphs::BuildFillConstantNode},
{"mul", paddle::operators::ngraphs::BuildMulNode}, {"mul", paddle::operators::ngraphs::BuildMulNode},
{"mul_grad", paddle::operators::ngraphs::BuildMulGradNode}, {"mul_grad", paddle::operators::ngraphs::BuildMulGradNode},
{"relu", paddle::operators::ngraphs::BuildUnaryNode<ngraph::op::Relu>}, {"relu", paddle::operators::ngraphs::BuildUnaryNode<ngraph::op::Relu>},
{"tanh", paddle::operators::ngraphs::BuildUnaryNode<ngraph::op::Tanh>}}; {"tanh", paddle::operators::ngraphs::BuildUnaryNode<ngraph::op::Tanh>},
{"top_k", paddle::operators::ngraphs::BuildTopKNode}};
void NgraphBridge::BuildNgNode(const std::shared_ptr<OperatorBase>& op) { void NgraphBridge::BuildNgNode(const std::shared_ptr<OperatorBase>& op) {
auto& op_type = op->Type(); auto& op_type = op->Type();

@ -643,7 +643,7 @@ void OpDesc::CheckAttrs() {
// not by users. // not by users.
return; return;
} }
checker->Check(attrs_); checker->Check(&attrs_);
} }
void OpDesc::InferShape(const BlockDesc &block) const { void OpDesc::InferShape(const BlockDesc &block) const {

@ -123,6 +123,8 @@ class OpDesc {
BlockDesc *Block() { return this->block_; } BlockDesc *Block() { return this->block_; }
const BlockDesc *Block() const { return this->block_; }
private: private:
template <typename MapType> template <typename MapType>
static std::vector<typename MapType::key_type> MapKeys(const MapType &map) { static std::vector<typename MapType::key_type> MapKeys(const MapType &map) {

@ -24,7 +24,7 @@ std::unique_ptr<OperatorBase> OpRegistry::CreateOp(
const VariableNameMap& outputs, AttributeMap attrs) { const VariableNameMap& outputs, AttributeMap attrs) {
auto& info = OpInfoMap::Instance().Get(type); auto& info = OpInfoMap::Instance().Get(type);
if (info.Checker() != nullptr) { if (info.Checker() != nullptr) {
info.Checker()->Check(attrs); info.Checker()->Check(&attrs);
} }
auto op = info.Creator()(type, inputs, outputs, attrs); auto op = info.Creator()(type, inputs, outputs, attrs);
return std::unique_ptr<OperatorBase>(op); return std::unique_ptr<OperatorBase>(op);

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save