Merge remote-tracking branch 'origin/develop' into multigpu

fix-typo
Dong Zhihong 8 years ago
commit d4d215a514

@ -243,7 +243,7 @@ class SymbolTable {
// TODO determine whether name is generated by python or C++.
// Currently assume that a unique name will be generated by C++ if the
// argument name is left default.
VarDesc* NewVar(const string& name="");
VarDesc* Var(const string& name="");
// find a VarDesc by name, if recursive is true, find parent's SymbolTable
// recursively.

@ -37,7 +37,7 @@ Scope is an association of a name to variable. All variables belong to `Scope`.
```cpp
class Scope {
public:
Variable* NewVar(const std::string& name);
Variable* Var(const std::string& name);
const Variable* FindVar(const std::string& name) const;
private:
@ -98,7 +98,7 @@ class Scope {
Variable* FindVar(const std::string& name) const;
// return if already contains same name variable.
Variable* NewVar(const std::string& name);
Variable* Var(const std::string& name);
private:
std::shared_ptr<Scope> parent_;
@ -107,7 +107,7 @@ class Scope {
```
## Only scope can create a variable
To ensure `only scope can create a variable`, we should mark `Variable`'s constructor as a private member function, and Scope is a friend class of Variable. And then only `NewVar` can construct `Variable`.
To ensure `only scope can create a variable`, we should mark `Variable`'s constructor as a private member function, and Scope is a friend class of Variable. And then only `Var` can construct `Variable`.
## When scope destroyed, all variables inside this scope should be destroyed together
@ -121,4 +121,4 @@ Also, as the parent scope is a `shared_ptr`, we can only `Create()` a scope shar
## Orthogonal interface
`FindVar` will return `nullptr` when `name` is not found. It can be used as `Contains` method. `NewVar` will return an `Error` when there is a name conflict locally. Combine `FindVar` and `NewVar`, we can implement `NewVar` easily.
`FindVar` will return `nullptr` when `name` is not found. It can be used as `Contains` method. `Var` will return an `Error` when there is a name conflict locally. Combine `FindVar` and `Var`, we can implement `Var` easily.

@ -161,7 +161,7 @@ class TensorArray:
@name: str
the name of the variable to output.
'''
tensor = NewVar(name)
tensor = Var(name)
tensor_array_stack(self.name, tensor)
return tensor

@ -273,18 +273,41 @@ static bool AllGradInSet(const std::vector<std::string>& names,
return true;
}
static void CreateGradVarInBlock(BlockDescBind* block_desc,
size_t grad_op_start_index) {
static void CreateGradVarInBlock(
size_t grad_op_start_index,
const std::unordered_map<std::string, std::string>& param_name_map,
BlockDescBind* block_desc,
std::unordered_map<std::string, GradVarInfo>* grad_var_record) {
auto ops = block_desc->AllOps();
for (size_t op_index = grad_op_start_index; op_index < ops.size();
++op_index) {
for (const auto& output : ops[op_index]->Outputs()) {
for (const auto& real_output : output.second) {
if (!block_desc->HasVar(real_output)) {
block_desc->NewVar(real_output);
}
// <<<<<<< HEAD
// for (const auto& output : ops[op_index]->Outputs()) {
// for (const auto& real_output : output.second) {
// if (!block_desc->HasVar(real_output)) {
// block_desc->Var(real_output);
// }
// }
// }
// =======
ForEachVarName(ops[op_index]->Outputs(),
[&](const std::string& grad_var_name) {
if (block_desc->HasVar(grad_var_name)) {
return false;
}
block_desc->Var(grad_var_name);
auto it = param_name_map.find(grad_var_name);
if (it == param_name_map.end()) {
return false;
}
auto param_var_name = it->second;
auto& grad_record = (*grad_var_record)[param_var_name];
grad_record.name_ = grad_var_name;
grad_record.block_idx_ = block_desc->ID();
grad_record.op_idx_ = static_cast<int>(op_index);
return false; /* not break */
});
// >>>>>>> origin/develop
}
}
@ -400,7 +423,8 @@ std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
return backward_descs;
}
void AppendBackward(ProgramDescBind& program_desc, const VarDescBind& target,
ParamGradInfoMap AppendBackward(
ProgramDescBind& program_desc, const VarDescBind& target,
const std::unordered_set<std::string>& no_grad_vars) {
std::unordered_set<std::string> no_grad_var_names;
no_grad_var_names.reserve(no_grad_vars.size() + 1);
@ -423,20 +447,28 @@ void AppendBackward(ProgramDescBind& program_desc, const VarDescBind& target,
all_ops.push_back(std::move(fill_one_op));
size_t forward_op_num = all_ops.size();
size_t forward_block_num = program_desc.Size();
// Insert backward operators
std::unordered_map<std::string, std::string> grad_to_var;
auto backward_op_descs = MakeBlockBackward(program_desc, root_block_idx,
&no_grad_var_names, &grad_to_var);
std::unordered_map<std::string, GradVarInfo> retv;
// Create Variable
for (auto& ptr : backward_op_descs) {
all_ops.push_back(std::move(ptr));
}
root_block->NewVar(fill_one_op_out);
root_block->Var(fill_one_op_out);
// create grad_var for all blocks in this program
CreateGradVarInBlock(root_block, forward_op_num);
CreateGradVarInBlock(forward_op_num, grad_to_var, root_block, &retv);
for (size_t block_index = forward_block_num;
block_index < program_desc.Size(); ++block_index) {
CreateGradVarInBlock(program_desc.Block(block_index), 0);
CreateGradVarInBlock(0, grad_to_var, program_desc.Block(block_index),
&retv);
}
return retv;
}
} // namespace framework

@ -14,7 +14,10 @@
#pragma once
#include <string>
#include <unordered_map>
#include <unordered_set>
#include "paddle/framework/operator.h"
#include "paddle/framework/program_desc.h"
@ -27,9 +30,17 @@ extern std::unique_ptr<OperatorBase> Backward(
const OperatorBase& forwardOp,
const std::unordered_set<std::string>& no_grad_vars);
// TODO(jiayi): Add target as parameter and generate backward op
// according to target.
void AppendBackward(ProgramDescBind& program_desc, const VarDescBind& target,
struct GradVarInfo {
std::string name_;
int block_idx_;
int op_idx_;
};
using ParamGradInfoMap = std::unordered_map<std::string /*fwd_var_name*/,
GradVarInfo /*grad_var_info*/>;
ParamGradInfoMap AppendBackward(
ProgramDescBind& program_desc, const VarDescBind& target,
const std::unordered_set<std::string>& no_grad_vars);
} // namespace framework

@ -18,19 +18,22 @@ limitations under the License. */
namespace paddle {
namespace framework {
VarDescBind *BlockDescBind::NewVar(const std::string &name) {
VarDescBind *BlockDescBind::Var(const std::string &name) {
need_update_ = true;
auto it = vars_.find(name);
PADDLE_ENFORCE(it == vars_.end(), "Duplicated variable %s", name);
auto var = new VarDescBind(name);
if (it != vars_.end()) {
return it->second.get();
}
auto *var = new VarDescBind(name);
vars_[name].reset(var);
return var;
}
VarDescBind *BlockDescBind::Var(const std::string &name) const {
VarDescBind *BlockDescBind::FindVar(const std::string &name) const {
auto it = vars_.find(name);
PADDLE_ENFORCE(it != vars_.end(),
"Can not find variable %s in current block.", name);
if (it == vars_.end()) {
return nullptr;
}
return it->second.get();
}

@ -33,15 +33,6 @@ class ProgramDescBind;
class BlockDescBind {
public:
friend std::vector<std::unique_ptr<OpDescBind>> MakeBlockBackward(
ProgramDescBind &program_desc, int block_idx,
std::unordered_set<std::string> *no_grad_vars,
std::unordered_map<std::string, std::string> *grad_to_var);
friend void AppendBackward(
ProgramDescBind &program_desc, const VarDescBind &target,
const std::unordered_set<std::string> &no_grad_vars);
BlockDescBind(ProgramDescBind *prog, BlockDesc *desc)
: prog_(prog), desc_(desc), need_update_(false) {}
@ -49,9 +40,9 @@ class BlockDescBind {
int32_t Parent() const { return desc_->parent_idx(); }
VarDescBind *NewVar(const std::string &name_bytes);
VarDescBind *Var(const std::string &name_bytes);
VarDescBind *Var(const std::string &name_bytes) const;
VarDescBind *FindVar(const std::string &name_bytes) const;
bool HasVar(const std::string &var_name) const;
@ -69,7 +60,9 @@ class BlockDescBind {
BlockDesc *Proto();
private:
// FIXME(yuyang18): backward will access private data of BlockDesc.
// Mark it public temporary. We can fix it later.
public:
ProgramDescBind *prog_; // not_own
BlockDesc *desc_; // not_own
bool need_update_;

@ -66,7 +66,7 @@ void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id) {
// Instantiate all the vars in the global scope
for (auto& var : block.vars()) {
scope->NewVar(var.name());
scope->Var(var.name());
}
Scope& local_scope = scope->NewScope();
@ -78,7 +78,7 @@ void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id) {
for (auto& var : block.ops(i).outputs()) {
for (auto& argu : var.arguments()) {
if (local_scope.FindVar(argu) == nullptr) {
local_scope.NewVar(argu);
local_scope.Var(argu);
}
}
}

@ -46,10 +46,16 @@ void AddOp(const std::string& type, const VariableNameMap& inputs,
// insert output
for (auto kv : outputs) {
for (auto v : kv.second) {
// <<<<<<< HEAD
// auto var = block->Var(v);
// var->SetType(VarDesc::LOD_TENSOR);
// var->SetDataType(paddle::framework::DataType::FP32);
// =======
if (!block->HasVar(v)) {
auto var = block->NewVar(v);
auto var = block->Var(v);
var->SetDataType(paddle::framework::DataType::FP32);
}
// >>>>>>> origin/develop
}
}

@ -403,11 +403,11 @@ class CompileTimeInferShapeContext : public InferShapeContext {
private:
DDim GetDim(const std::string& name) const override {
return framework::make_ddim(block_.Var(name)->Shape());
return framework::make_ddim(block_.FindVar(name)->Shape());
}
void SetDim(const std::string& name, const DDim& dim) override {
block_.Var(name)->SetShape(framework::vectorize(dim));
block_.FindVar(name)->SetShape(framework::vectorize(dim));
}
const OpDescBind& op_;

@ -84,7 +84,7 @@ TEST(OperatorBase, all) {
paddle::framework::Scope scope;
auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
scope.NewVar("OUT1");
scope.Var("OUT1");
ASSERT_EQ(paddle::framework::op_run_num, 0);
op->Run(scope, device_context);
ASSERT_EQ(paddle::framework::op_run_num, 1);
@ -237,12 +237,12 @@ TEST(OpKernel, multi_inputs) {
paddle::platform::CPUDeviceContext cpu_device_context;
paddle::framework::Scope scope;
scope.NewVar("x0")->GetMutable<Tensor>();
scope.NewVar("x1")->GetMutable<Tensor>();
scope.NewVar("x2")->GetMutable<Tensor>();
scope.NewVar("k0")->GetMutable<Tensor>();
scope.NewVar("y0")->GetMutable<Tensor>();
scope.NewVar("y1")->GetMutable<Tensor>();
scope.Var("x0")->GetMutable<Tensor>();
scope.Var("x1")->GetMutable<Tensor>();
scope.Var("x2")->GetMutable<Tensor>();
scope.Var("k0")->GetMutable<Tensor>();
scope.Var("y0")->GetMutable<Tensor>();
scope.Var("y1")->GetMutable<Tensor>();
auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
op->Run(scope, cpu_device_context);

@ -31,7 +31,7 @@ Scope& Scope::NewScope() const {
return *kids_.back();
}
Variable* Scope::NewVar(const std::string& name) {
Variable* Scope::Var(const std::string& name) {
auto iter = vars_.find(name);
if (iter != vars_.end()) {
return iter->second;
@ -42,8 +42,8 @@ Variable* Scope::NewVar(const std::string& name) {
return v;
}
Variable* Scope::NewVar() {
return NewVar(string::Sprintf("%p.%d", this, vars_.size()));
Variable* Scope::Var() {
return Var(string::Sprintf("%p.%d", this, vars_.size()));
}
Variable* Scope::FindVar(const std::string& name) const {
@ -71,8 +71,8 @@ framework::Scope& GetGlobalScope() {
static std::unique_ptr<framework::Scope> g_scope{nullptr};
std::call_once(feed_variable_flag, [&]() {
g_scope.reset(new framework::Scope());
g_scope->NewVar("feed_value");
g_scope->NewVar("fetch_value");
g_scope->Var("feed_value");
g_scope->Var("fetch_value");
});
return *(g_scope.get());
}

@ -45,10 +45,10 @@ class Scope {
Scope& NewScope() const;
/// Create a variable with given name if it doesn't exist.
Variable* NewVar(const std::string& name);
Variable* Var(const std::string& name);
/// Create a variable with a scope-unique name.
Variable* NewVar();
Variable* Var();
/// Find a variable in the scope or any of its ancestors. Returns
/// nullptr if cannot find.

@ -23,8 +23,8 @@ TEST(Scope, VarsShadowing) {
Scope& ss1 = s.NewScope();
Scope& ss2 = s.NewScope();
Variable* v0 = s.NewVar("a");
Variable* v1 = ss1.NewVar("a");
Variable* v0 = s.Var("a");
Variable* v1 = ss1.Var("a");
EXPECT_NE(v0, v1);
@ -40,7 +40,7 @@ TEST(Scope, FindVar) {
EXPECT_EQ(nullptr, s.FindVar("a"));
EXPECT_EQ(nullptr, ss.FindVar("a"));
ss.NewVar("a");
ss.Var("a");
EXPECT_EQ(nullptr, s.FindVar("a"));
EXPECT_NE(nullptr, ss.FindVar("a"));
@ -49,7 +49,7 @@ TEST(Scope, FindVar) {
TEST(Scope, FindScope) {
Scope s;
Scope& ss = s.NewScope();
Variable* v = s.NewVar("a");
Variable* v = s.Var("a");
EXPECT_EQ(&s, s.FindScope(v));
EXPECT_EQ(&s, ss.FindScope(v));

@ -86,6 +86,7 @@ protected:
/// Also used in 'use_mkldnn' case.
std::vector<Argument> outputOtherDevice_;
/// If there are several outputs, map them by each name.
/// MKLDNNLayer use it only to merge output grad
std::map<std::string, Argument*> outputMap_;
/// Used to merge grad on different devices.
MatrixPtr tmpGrad_;
@ -325,6 +326,11 @@ public:
outputMap_[name] = output;
}
/**
* Get the output map size, if layer has multi-output.
*/
size_t getOutputMapSize() { return outputMap_.size(); }
/**
* Get the output based on layer's name.
*/

@ -225,8 +225,6 @@ void MKLDNNConvLayer::resetFwdPipeline(
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
pipeline.clear();
if (cvtInVal_) {
pipeline.push_back(*cvtInVal_);
}
@ -245,7 +243,7 @@ void MKLDNNConvLayer::resetFwdPipeline(
void MKLDNNConvLayer::resetInValue(
std::shared_ptr<conv_fwd::primitive_desc>& pd, MKLDNNMatrixPtr& in) {
const MatrixPtr& inMat = inputLayers_[0]->getOutput().value;
const MatrixPtr& inMat = inputLayers_[0]->getOutputValue();
in = MKLDNNMatrix::create(inMat, pd->src_primitive_desc());
// create buffer and reorder if input value do not match
@ -310,15 +308,20 @@ void MKLDNNConvLayer::resetOutValue(
const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value;
memory::dims outDims = memory::dims{bs_, oc_, oh_, ow_};
cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_);
if (cpuOutVal_->getPrimitiveDesc() != out->getPrimitiveDesc()) {
if (cpuOutVal_->getPrimitiveDesc() != pd->dst_primitive_desc()) {
out = MKLDNNMatrix::create(nullptr, pd->dst_primitive_desc());
cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_);
CHECK(cvtOutVal_) << "should not be emptry";
CHECK(cvtOutVal_) << "should not be empty";
} else {
// CPU output share the same data of MKLDNN output
cpuOut->setData(out->getData());
cpuOutVal_ = out;
}
// when output is cpu device, change the mkldnn output value and make them
// share the same data. Then if next layer use inputlayer->getOuputValue()
// to achieve the input value, it will get the right data.
output_.value = std::dynamic_pointer_cast<Matrix>(cpuOutVal_);
return;
}
output_.value = std::dynamic_pointer_cast<Matrix>(out);
}
void MKLDNNConvLayer::resetBwdWgtPD(
@ -412,8 +415,6 @@ void MKLDNNConvLayer::resetBwdPipeline(
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
pipeline.clear();
if (cvtOutGrad_) {
pipeline.push_back(*cvtOutGrad_);
}
@ -446,28 +447,27 @@ void MKLDNNConvLayer::resetBwdPipeline(
void MKLDNNConvLayer::resetOutGrad(
std::shared_ptr<conv_bwdWgt::primitive_desc>& wgtPD, MKLDNNMatrixPtr& out) {
const MatrixPtr& outMat = output_.grad;
out = MKLDNNMatrix::create(outMat, wgtPD->diff_dst_primitive_desc());
CHECK(outVal_ != nullptr &&
out->getPrimitiveDesc() == outVal_->getPrimitiveDesc())
<< "primitive desc of out grad and value should be equal";
// TODO(TJ): merge outgrad
// create reorder if has output grad does not match
cpuOutGrad_ = nullptr;
cvtOutGrad_ = nullptr;
if (!outputIsOnlyMKLDNN()) {
CHECK(outVal_ != nullptr &&
outVal_->getPrimitiveDesc() == wgtPD->diff_dst_primitive_desc())
<< "primitive desc of out grad and value should be equal";
if (outputIsOnlyMKLDNN()) {
MKLDNNLayer::resetOutGrad(out, outVal_->getPrimitiveDesc());
} else {
const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad;
outMat->setData(cpuOut->getData());
// same PrimitiveDesc with cpuInVal_
CHECK(cpuOutVal_);
cpuOutGrad_ = MKLDNNMatrix::create(cpuOut, cpuOutVal_->getPrimitiveDesc());
if (cpuOutGrad_->getPrimitiveDesc() == out->getPrimitiveDesc()) {
out = cpuOutGrad_;
} else {
out = MKLDNNMatrix::create(nullptr, wgtPD->diff_dst_primitive_desc());
// create reorder if primitive desc does not match
if (cpuOutGrad_->getPrimitiveDesc() != outVal_->getPrimitiveDesc()) {
out = MKLDNNMatrix::create(output_.grad, outVal_->getPrimitiveDesc());
cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out);
CHECK(cvtOutGrad_);
} else {
// share the same data of CPU output
output_.grad->setData(cpuOut->getData());
out = cpuOutGrad_;
}
}
}
@ -496,32 +496,30 @@ void MKLDNNConvLayer::resetWgtBiasGrad(
void MKLDNNConvLayer::resetInGrad(
std::shared_ptr<conv_bwdData::primitive_desc>& dataPD,
MKLDNNMatrixPtr& in) {
in = nullptr;
cpuInGrad_ = nullptr;
cvtInGrad_ = nullptr;
if (dataPD == nullptr) {
return;
}
// TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
in = MKLDNNMatrix::create(inputLayers_[0]->getOutput().grad,
dataPD->diff_src_primitive_desc());
if (inputIsOnlyMKLDNN()) {
MKLDNNLayer::resetInGrad(in, dataPD->diff_src_primitive_desc());
CHECK(nullptr != inVal_ &&
in->getPrimitiveDesc() == inVal_->getPrimitiveDesc())
<< "primitive desc of input grad and value should be equal";
// create reorder if has output grad does not match
cpuInGrad_ = nullptr;
cvtInGrad_ = nullptr;
if (!inputIsOnlyMKLDNN()) {
} else {
const MatrixPtr& cpuIn = getInputGrad(0, CPU_DEVICE);
// same PrimitiveDesc with cpuInVal_
CHECK(cpuInVal_);
cpuInGrad_ = MKLDNNMatrix::create(cpuIn, cpuInVal_->getPrimitiveDesc());
if (cpuInGrad_->getPrimitiveDesc() != in->getPrimitiveDesc()) {
const MatrixPtr& dnnIn = getInputGrad(0, MKLDNN_DEVICE);
in = MKLDNNMatrix::create(dnnIn, in->getPrimitiveDesc());
in = cpuInGrad_;
// create reorder if PrimitiveDesc does not match
if (cpuInGrad_->getPrimitiveDesc() != dataPD->diff_src_primitive_desc()) {
in = MKLDNNMatrix::create(getInputGrad(0, MKLDNN_DEVICE),
dataPD->diff_src_primitive_desc());
cvtInGrad_ = MKLDNNMatrix::createReorder(in, cpuInGrad_);
CHECK(cvtInGrad_);
} else {
in = cpuInGrad_;
}
}
}

@ -180,10 +180,10 @@ void MKLDNNFcLayer::resetWgtBiasValue(MKLDNNMatrixPtr& wgt,
void MKLDNNFcLayer::resetOutValue(MKLDNNMatrixPtr& out) {
out = MKLDNNMatrix::create(output_.value, {bs_, oc_}, format::nc, engine_);
if (!outputIsOnlyMKLDNN()) {
// fc cpu output value do not need create convert
// just share point
// fc cpu output value do not need create convert, just share data
getOutput(CPU_DEVICE).value->setData(out->getData());
}
output_.value = std::dynamic_pointer_cast<Matrix>(out);
}
void MKLDNNFcLayer::resetFwdPD(std::shared_ptr<fc_fwd::primitive_desc>& pd,
@ -214,8 +214,6 @@ void MKLDNNFcLayer::resetFwdPipeline(
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
pipeline.clear();
if (bias) {
fwd_.reset(new fc_fwd(*pd, *in, *wgt, *bias, *out));
} else {
@ -237,19 +235,14 @@ void MKLDNNFcLayer::resetBwdBuffers(MKLDNNMatrixPtr& in,
}
void MKLDNNFcLayer::resetOutGrad(MKLDNNMatrixPtr& out) {
// TODO(TJ): merge outgrad
int device = outputIsOnlyMKLDNN() ? MKLDNN_DEVICE : CPU_DEVICE;
output_.grad->setData(getOutput(device).grad->getData());
// for MKLDNN device:
// can not directly cast outputgrad to mkldnnmatrix,
// since each layer can not write the inputgrad to mkldnn inputgrad.
// So just create from matrix with outputvalue format.
// for CPU device:
// fc do not need to convert from cpu device since output is always nc format
// only need create from cpu device
CHECK(outVal_);
out =
MKLDNNMatrix::create(getOutput(device).grad, outVal_->getPrimitiveDesc());
if (outputIsOnlyMKLDNN()) {
MKLDNNLayer::resetOutGrad(out, outVal_->getPrimitiveDesc());
} else {
const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad;
output_.grad->setData(cpuOut->getData());
out = MKLDNNMatrix::create(cpuOut, outVal_->getPrimitiveDesc());
}
}
void MKLDNNFcLayer::resetWgtBiasGrad(MKLDNNMatrixPtr& wgt,
@ -267,13 +260,11 @@ void MKLDNNFcLayer::resetWgtBiasGrad(MKLDNNMatrixPtr& wgt,
void MKLDNNFcLayer::resetInGrad(MKLDNNMatrixPtr& in) {
in = nullptr;
const MatrixPtr& inGrad = inputLayers_[0]->getOutput().grad;
if (inGrad == nullptr) {
if (inputLayers_[0]->getOutput().grad == nullptr) {
return;
}
// TODO(TJ): use outputMaps_ ways to get the inGrad_ when merge outgrad done
CHECK(inVal_);
in = MKLDNNMatrix::create(inGrad, inVal_->getPrimitiveDesc());
MKLDNNLayer::resetInGrad(in, inVal_->getPrimitiveDesc());
}
void MKLDNNFcLayer::resetBwdWgtPD(
@ -314,7 +305,6 @@ void MKLDNNFcLayer::resetBwdPipeline(
MKLDNNMatrixPtr& wgt,
MKLDNNMatrixPtr& bias,
MKLDNNMatrixPtr& out) {
pipeline.clear();
CHECK(inVal_);
if (bias) {
bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVal_, *out, *wgt, *bias));

@ -65,6 +65,17 @@ protected:
MKLDNNMatrixPtr biasVal_;
MKLDNNMatrixPtr biasGrad_;
// merge grad primitive
std::shared_ptr<mkldnn::primitive> mergeGrad_;
std::vector<mkldnn::primitive> pipelineMergeGrad_;
// tmp input argument to save input grad, only used to merge grad
Argument tmpInArg_;
// since mkldnn sum do not support different formats:
// can refer to https://github.com/01org/mkl-dnn/issues/134
// so need create reorder manually and save tmp MKLDNNMatrix
MKLDNNMatrixPtr tmpOutGrad_;
std::shared_ptr<mkldnn::primitive> tmpCvt_;
public:
explicit MKLDNNLayer(const LayerConfig& config)
: Layer(config),
@ -99,6 +110,7 @@ public:
if (!Layer::init(layerMap, parameterMap)) {
return false;
}
setOutputMap();
checkCPUOutputsNumber();
stream_.reset(new MKLDNNStream());
@ -118,12 +130,9 @@ public:
VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward";
// reset when input total sizes changed, not only the batchsize
inputElemenCnt_ = elemenCnt;
pipelineFwd_.clear();
reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_);
resetFwd(pipelineFwd_, inVal_, wgtVal_, biasVal_, outVal_);
if (outVal_) {
// change original output value to mkldnn output value
output_.value = std::dynamic_pointer_cast<Matrix>(outVal_);
}
convertWeightsFromPaddle();
needResetBwd_ = true;
}
@ -144,9 +153,18 @@ public:
void backward(const UpdateCallback& callback) override {
if (needResetBwd_) {
VLOG(MKLDNN_BASE) << getName() << " reset mkldnn backward";
pipelineBwd_.clear();
pipelineMergeGrad_.clear();
mergeGrad_ = nullptr;
resetBwd(pipelineBwd_, inGrad_, wgtGrad_, biasGrad_, outGrad_);
needResetBwd_ = false;
}
// merge grad must before backward activation
if (mergeGrad_) {
REGISTER_TIMER_INFO("MergeBpGrad", getName().c_str());
stream_->submit(pipelineMergeGrad_);
}
{
REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
backwardActivation();
@ -247,6 +265,76 @@ protected:
}
}
/**
* reset the output grad matrix from primitive desc.
* and reset the merge grad primitive if needed.
* note: when this layer has serval outputs,
* it could not be mixed with cpu device,
* since it can not get memory desc from cpu device.
*/
virtual void resetOutGrad(MKLDNNMatrixPtr& out,
mkldnn::memory::primitive_desc pd) {
CHECK(outputIsOnlyMKLDNN()) << "do not support mixed with other device yet";
mergeGrad_ = nullptr;
pipelineMergeGrad_.clear();
out = MKLDNNMatrix::create(output_.grad, pd);
if (outputMap_.size() <= 1) {
return;
}
std::vector<double> scales(outputMap_.size(), 1.0);
std::vector<mkldnn::memory::primitive_desc> srcPDs;
std::vector<mkldnn::primitive::at> srcs;
for (auto it = outputMap_.begin(); it != outputMap_.end(); ++it) {
MKLDNNMatrixPtr src =
std::dynamic_pointer_cast<MKLDNNMatrix>(it->second->grad);
VLOG(MKLDNN_BASE) << getName() << " has output grad " << it->first;
CHECK(src) << "should be MKLDNNMatrix";
auto srcDims = src->getDims();
auto dstDims = out->getDims();
CHECK_EQ(srcDims.size(), dstDims.size());
for (size_t i = 0; i < srcDims.size(); ++i) {
CHECK_EQ(srcDims[i], dstDims[i]);
}
srcPDs.push_back(src->getPrimitiveDesc());
srcs.push_back(*src);
}
// TODO(TJ): remove me when mkldnn sum support different formats
for (size_t i = 1; i < srcPDs.size(); ++i) {
CHECK(srcPDs[0] == srcPDs[i]);
}
tmpOutGrad_ = nullptr;
tmpCvt_ = nullptr;
if (out->getPrimitiveDesc() != srcPDs[0]) {
tmpOutGrad_ = MKLDNNMatrix::create(nullptr, srcPDs[0]);
tmpCvt_ = MKLDNNMatrix::createReorder(tmpOutGrad_, out);
CHECK(tmpCvt_);
pipelineMergeGrad_.push_back(*tmpCvt_);
} else {
tmpOutGrad_ = out;
}
auto sumPD = mkldnn::sum::primitive_desc(
tmpOutGrad_->getMemoryDesc(), scales, srcPDs);
mergeGrad_.reset(new mkldnn::sum(sumPD, srcs, *tmpOutGrad_));
pipelineMergeGrad_.insert(pipelineMergeGrad_.begin(), *mergeGrad_);
}
/**
* reset input grad from primitive desc.
* this function is avaiable for input is only mkldnn
* or input do not care cpu device
*/
virtual void resetInGrad(MKLDNNMatrixPtr& in,
mkldnn::memory::primitive_desc pd) {
LayerPtr& input = inputLayers_[0];
const MatrixPtr& grad =
input->getOutputMapSize() > 1 ? nullptr : input->getOutput().grad;
in = MKLDNNMatrix::create(grad, pd);
Argument& arg = input->getOutput(this->getName());
arg.grad = std::dynamic_pointer_cast<Matrix>(in);
}
/**
* print info about sizes
*/
@ -334,6 +422,16 @@ private:
}
}
/**
* Set output map of prev layers.
*/
void setOutputMap() {
outputMap_.clear();
for (size_t i = 0; i < inputLayers_.size(); ++i) {
inputLayers_[i]->setOutput(getName(), &tmpInArg_);
}
}
/**
* Check the cpu device number of outputOtherDevice_.
* should have only one at most.

@ -142,14 +142,16 @@ void MKLDNNPoolLayer::resetOutValue(MKLDNNMatrixPtr& out) {
const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).value;
cpuOutVal_ = MKLDNNMatrix::create(cpuOut, outDims, format::nchw, engine_);
if (cpuOutVal_->getPrimitiveDesc() != out->getPrimitiveDesc()) {
out = MKLDNNMatrix::create(nullptr, out->getPrimitiveDesc());
cvtOutVal_ = MKLDNNMatrix::createReorder(out, cpuOutVal_);
CHECK(cvtOutVal_) << "should not be emptry";
} else {
// CPU output share the same data of MKLDNN output
cpuOut->setData(out->getData());
cpuOutVal_ = out;
}
output_.value = std::dynamic_pointer_cast<Matrix>(cpuOutVal_);
return;
}
output_.value = std::dynamic_pointer_cast<Matrix>(outVal_);
}
void MKLDNNPoolLayer::resetFwdPD(std::shared_ptr<pool_fwd::primitive_desc>& pd,
@ -187,7 +189,6 @@ void MKLDNNPoolLayer::resetFwdPipeline(
std::shared_ptr<pool_fwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out) {
pipeline.clear();
fwd_ = workspace_
? std::make_shared<pool_fwd>(pool_fwd(*pd, *in, *out, *workspace_))
: std::make_shared<pool_fwd>(pool_fwd(*pd, *in, *out));
@ -205,17 +206,17 @@ void MKLDNNPoolLayer::resetBwdBuffers(MKLDNNMatrixPtr& in,
resetInGrad(in);
}
void MKLDNNPoolLayer::resetOutGrad(MKLDNNMatrixPtr& out) {
CHECK(outVal_) << "Should have output value";
out = MKLDNNMatrix::create(output_.grad, outVal_->getPrimitiveDesc());
// create reorder if output value has cpu device and pd do not match
cpuOutGrad_ = nullptr;
cvtOutGrad_ = nullptr;
if (!outputIsOnlyMKLDNN()) {
CHECK(outVal_);
if (outputIsOnlyMKLDNN()) {
MKLDNNLayer::resetOutGrad(out, outVal_->getPrimitiveDesc());
} else {
const MatrixPtr& cpuOut = getOutput(CPU_DEVICE).grad;
cpuOutGrad_ = MKLDNNMatrix::create(
cpuOut, memory::dims{bs_, oc_, oh_, ow_}, format::nchw, engine_);
if (cpuOutGrad_->getPrimitiveDesc() != out->getPrimitiveDesc()) {
if (cpuOutGrad_->getPrimitiveDesc() != outVal_->getPrimitiveDesc()) {
out = MKLDNNMatrix::create(output_.grad, outVal_->getPrimitiveDesc());
cvtOutGrad_ = MKLDNNMatrix::createReorder(cpuOutGrad_, out);
CHECK(cvtOutGrad_) << "should not be emptry";
} else {
@ -228,12 +229,11 @@ void MKLDNNPoolLayer::resetOutGrad(MKLDNNMatrixPtr& out) {
void MKLDNNPoolLayer::resetInGrad(MKLDNNMatrixPtr& in) {
in = nullptr;
const MatrixPtr& inGrad = inputLayers_[0]->getOutput().grad;
if (inGrad == nullptr) {
if (inputLayers_[0]->getOutput().grad == nullptr) {
return;
}
CHECK(inVal_);
in = MKLDNNMatrix::create(inGrad, inVal_->getPrimitiveDesc());
MKLDNNLayer::resetInGrad(in, inVal_->getPrimitiveDesc());
}
void MKLDNNPoolLayer::resetBwdPD(std::shared_ptr<pool_bwd::primitive_desc>& pd,
@ -261,7 +261,6 @@ void MKLDNNPoolLayer::resetBwdPipeline(
std::shared_ptr<pool_bwd::primitive_desc>& pd,
MKLDNNMatrixPtr& in,
MKLDNNMatrixPtr& out) {
pipeline.clear();
if (cvtOutGrad_) {
pipeline.push_back(*cvtOutGrad_);
}

@ -124,8 +124,8 @@ void MKLDNNTester::randomTopDiffs() {
void MKLDNNTester::checkForward() {
VLOG(MKLDNN_ALL) << "Check Forward";
printTopDatas();
double delta = compareMatrix(dnnLayer_->getOutput(CPU_DEVICE).value,
refLayer_->getOutputValue());
double delta =
compareMatrix(dnnLayer_->getOutputValue(), refLayer_->getOutputValue());
EXPECT_LE(fabs(delta), eps_);
}

@ -134,7 +134,7 @@ void CondOp::PrepareDataForSubnet(
for (int i = 0; i < BRANCH_NUM; ++i) {
for (auto& output : (*sub_net_op_[i]).Outputs()) {
for (auto& var_name : output.second) {
sub_scopes[i]->NewVar(var_name);
sub_scopes[i]->Var(var_name);
}
}
}

@ -30,7 +30,7 @@ namespace detail {
inline void CreateVariables(Scope& scope,
const std::vector<std::string>& var_names) {
for (const auto& name : var_names) {
scope.NewVar(name);
scope.Var(name);
}
}
@ -136,7 +136,7 @@ void DynamicRecurrentOp::WriteStepInputs() const {
auto& step_scope = cache_.GetScope(step);
Variable* var = step_scope.FindVar(item.first);
if (var == nullptr) {
var = step_scope.NewVar(item.first);
var = step_scope.Var(item.first);
}
var->GetMutable<LoDTensor>()->ShareDataWith<value_type>(tensor);
}

@ -36,7 +36,7 @@ void OpDescNewVar(const std::string& param_name,
// create a LoD tensor in scope with specific dims
LoDTensor* CreateVar(Scope& scope, std::string name, framework::DDim dims,
const platform::Place& place) {
auto* var = scope.NewVar(name);
auto* var = scope.Var(name);
auto* tensor = var->GetMutable<LoDTensor>();
tensor->Resize(dims);
tensor->mutable_data<float>(place);
@ -85,7 +85,7 @@ class DynamicRecurrentOpTestHelper : public ::testing::Test {
void CreateGlobalVariables() {
platform::CPUPlace place;
scope.NewVar("step_scopes");
scope.Var("step_scopes");
CreateVar(scope, "boot_mem", framework::make_ddim({10, 20}), place);
CreateVar(scope, "out0", framework::make_ddim({10, 20}), place);
auto* in0 = CreateVar(scope, "in0", framework::make_ddim({10, 8}), place);

@ -70,14 +70,14 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope,
// the weight are located in parent scope
for (auto& var_name : input.second) {
if (!step_scope.FindVar(var_name)) {
step_scope.NewVar(var_name)->GetMutable<LoDTensor>();
step_scope.Var(var_name)->GetMutable<LoDTensor>();
}
}
}
// create stepnet's outputs
for (const auto& output : (*stepnet_)->Outputs()) {
for (auto& var_name : output.second) {
step_scope.NewVar(var_name);
step_scope.Var(var_name);
}
}
step_scopes->emplace_back(&step_scope);
@ -87,7 +87,7 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope,
void RecurrentAlgorithm::InitMemories(Scope* step_scope) const {
for (auto& attr : arg_->memories) {
auto* pre_mem = step_scope->NewVar(attr.pre_var)->GetMutable<LoDTensor>();
auto* pre_mem = step_scope->Var(attr.pre_var)->GetMutable<LoDTensor>();
PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
"memory [%s]'s boot variable [%s] not exists", attr.var,
attr.boot_var);
@ -167,9 +167,9 @@ void RecurrentGradientAlgorithm::LinkBootMemoryGradients(
"memory variable [%s] does not exists", attr.var);
PADDLE_ENFORCE(step_scope->FindVar(attr.boot_var) != nullptr,
"boot variable [%s] does not exists", attr.boot_var);
auto* mem_grad = step_scope->NewVar(attr.var)->GetMutable<LoDTensor>();
auto* mem_grad = step_scope->Var(attr.var)->GetMutable<LoDTensor>();
auto* boot_mem_grad =
step_scope->NewVar(attr.boot_var)->GetMutable<LoDTensor>();
step_scope->Var(attr.boot_var)->GetMutable<LoDTensor>();
boot_mem_grad->Resize(mem_grad->dims());
boot_mem_grad->ShareDataWith<float>(*mem_grad);
}

@ -40,7 +40,7 @@ void SegmentInputs(const std::vector<Scope*>& step_scopes,
f::DDim step_dims = slice_ddim(dims, 1, dims.size());
for (size_t j = 0; j < seq_len; j++) {
Tensor* step_input =
step_scopes[j]->NewVar(inlinks[i])->GetMutable<Tensor>();
step_scopes[j]->Var(inlinks[i])->GetMutable<Tensor>();
// The input of operators of each step is Tensor here.
// Maybe need to modify Slice function.
*step_input = input->Slice<float>(j, j + 1);

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save