|
|
@ -17,6 +17,178 @@ limitations under the License. */
|
|
|
|
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
namespace paddle {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
|
|
|
|
|
|
__global__
|
|
|
|
|
|
|
|
void im2col(const T* data_im, int numOuts, int height, int width,
|
|
|
|
|
|
|
|
int blockH, int blockW,
|
|
|
|
|
|
|
|
int strideH, int strideW,
|
|
|
|
|
|
|
|
int paddingH, int paddingW,
|
|
|
|
|
|
|
|
int height_col, int width_col,
|
|
|
|
|
|
|
|
T* data_col) {
|
|
|
|
|
|
|
|
int index =
|
|
|
|
|
|
|
|
(blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
|
|
|
|
|
|
|
|
if (index < numOuts) {
|
|
|
|
|
|
|
|
int w_out = index % width_col;
|
|
|
|
|
|
|
|
index /= width_col;
|
|
|
|
|
|
|
|
int h_out = index % height_col;
|
|
|
|
|
|
|
|
int channel_in = index / height_col;
|
|
|
|
|
|
|
|
int channel_out = channel_in * blockH * blockW;
|
|
|
|
|
|
|
|
int h_in = h_out * strideH;
|
|
|
|
|
|
|
|
int w_in = w_out * strideW;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_col += (channel_out * height_col + h_out) * width_col + w_out;
|
|
|
|
|
|
|
|
for (int i = 0; i < blockH; ++i) {
|
|
|
|
|
|
|
|
for (int j = 0; j < blockW; ++j) {
|
|
|
|
|
|
|
|
int rIdx = int(h_in+i);
|
|
|
|
|
|
|
|
int cIdx = int(w_in+j);
|
|
|
|
|
|
|
|
if ((rIdx-(int)paddingH) >= (int)height ||
|
|
|
|
|
|
|
|
(rIdx-(int)paddingH) < 0 ||
|
|
|
|
|
|
|
|
(cIdx-(int)paddingW) >= (int)width ||
|
|
|
|
|
|
|
|
(cIdx-(int)paddingW) < 0) {
|
|
|
|
|
|
|
|
*data_col = 0;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
|
|
|
|
rIdx = rIdx + channel_in*height - paddingH;
|
|
|
|
|
|
|
|
cIdx = cIdx - paddingW;
|
|
|
|
|
|
|
|
*data_col = data_im[rIdx* width + cIdx];
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
data_col += height_col * width_col;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
|
|
|
|
class Im2ColFunctor<kCFO, DEVICE_TYPE_GPU, T> {
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
void operator()(const T* imData,
|
|
|
|
|
|
|
|
const TensorShape& imShape,
|
|
|
|
|
|
|
|
T* colData,
|
|
|
|
|
|
|
|
const TensorShape& colShape,
|
|
|
|
|
|
|
|
int strideHeight,
|
|
|
|
|
|
|
|
int strideWidth,
|
|
|
|
|
|
|
|
int paddingHeight,
|
|
|
|
|
|
|
|
int paddingWidth) {
|
|
|
|
|
|
|
|
int inputChannels = imShape[0];
|
|
|
|
|
|
|
|
int inputHeight = imShape[1];
|
|
|
|
|
|
|
|
int inputWidth = imShape[2];
|
|
|
|
|
|
|
|
int filterHeight = colShape[3];
|
|
|
|
|
|
|
|
int filterWidth = colShape[4];
|
|
|
|
|
|
|
|
int outputHeight = colShape[0];
|
|
|
|
|
|
|
|
int outputWidth = colShape[1];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int numKernels = inputChannels * outputHeight * outputWidth;
|
|
|
|
|
|
|
|
int blocks = (numKernels + 1024 -1) / 1024;
|
|
|
|
|
|
|
|
int blockX = 512;
|
|
|
|
|
|
|
|
int blockY = (blocks + 512 - 1) / 512;
|
|
|
|
|
|
|
|
dim3 threads(1024, 1);
|
|
|
|
|
|
|
|
dim3 grid(blockX, blockY);
|
|
|
|
|
|
|
|
im2col<T><<< grid, threads, 0, STREAM_DEFAULT >>>
|
|
|
|
|
|
|
|
(imData, numKernels, inputHeight, inputWidth, filterHeight, filterWidth,
|
|
|
|
|
|
|
|
strideHeight, strideWidth, paddingHeight, paddingWidth,
|
|
|
|
|
|
|
|
outputHeight, outputWidth, colData);
|
|
|
|
|
|
|
|
CHECK_SYNC("Im2ColFunctor GPU failed");
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
|
|
|
|
|
|
__global__
|
|
|
|
|
|
|
|
void col2im(size_t n, const T* data_col, size_t height,
|
|
|
|
|
|
|
|
size_t width, size_t channels,
|
|
|
|
|
|
|
|
size_t blockH, size_t blockW,
|
|
|
|
|
|
|
|
size_t strideH, size_t strideW,
|
|
|
|
|
|
|
|
size_t paddingH, size_t paddingW,
|
|
|
|
|
|
|
|
size_t height_col, size_t width_col,
|
|
|
|
|
|
|
|
T* data_im) {
|
|
|
|
|
|
|
|
size_t index =
|
|
|
|
|
|
|
|
(blockIdx.x * gridDim.y + blockIdx.y) * blockDim.x + threadIdx.x;
|
|
|
|
|
|
|
|
if (index < n) {
|
|
|
|
|
|
|
|
T val = 0;
|
|
|
|
|
|
|
|
int w = int(index % width);
|
|
|
|
|
|
|
|
int h = int((index / width) % height);
|
|
|
|
|
|
|
|
int c = int(index / (width * height));
|
|
|
|
|
|
|
|
if ((w - (int)paddingW) >= 0 &&
|
|
|
|
|
|
|
|
(w - (int)paddingW) < (width-2 * paddingW) &&
|
|
|
|
|
|
|
|
(h - (int)paddingH) >= 0 &&
|
|
|
|
|
|
|
|
(h - paddingH) < (height - 2 * paddingH)) {
|
|
|
|
|
|
|
|
// compute the start and end of the output
|
|
|
|
|
|
|
|
int w_col_start =
|
|
|
|
|
|
|
|
(w < (int)blockW) ? 0 : (w - int(blockW)) / (int)strideW + 1;
|
|
|
|
|
|
|
|
int w_col_end =
|
|
|
|
|
|
|
|
min((int)(w / (int)strideW + 1), (int)(width_col));
|
|
|
|
|
|
|
|
int h_col_start =
|
|
|
|
|
|
|
|
(h < (int)blockH) ? 0 : (h - (int)blockH) / (int)strideH + 1;
|
|
|
|
|
|
|
|
int h_col_end = min(int(h / strideH + 1), int(height_col));
|
|
|
|
|
|
|
|
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
|
|
|
|
|
|
|
|
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
|
|
|
|
|
|
|
|
// the col location: [c * width * height + h_out, w_out]
|
|
|
|
|
|
|
|
int c_col = int(c * blockH* blockW) + \
|
|
|
|
|
|
|
|
(h - h_col * (int)strideH) * (int)blockW +
|
|
|
|
|
|
|
|
(w - w_col * (int)strideW);
|
|
|
|
|
|
|
|
val += data_col[(c_col * height_col + h_col) * width_col + w_col];
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
h -= paddingH;
|
|
|
|
|
|
|
|
w -= paddingW;
|
|
|
|
|
|
|
|
data_im[c*((width-2*paddingW) * (height-2*paddingH)) +
|
|
|
|
|
|
|
|
h*(width-2*paddingW) + w] += val;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
|
|
|
|
class Col2ImFunctor<kCFO, DEVICE_TYPE_GPU, T> {
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
void operator()(T* imData,
|
|
|
|
|
|
|
|
const TensorShape& imShape,
|
|
|
|
|
|
|
|
const T* colData,
|
|
|
|
|
|
|
|
const TensorShape& colShape,
|
|
|
|
|
|
|
|
int strideHeight,
|
|
|
|
|
|
|
|
int strideWidth,
|
|
|
|
|
|
|
|
int paddingHeight,
|
|
|
|
|
|
|
|
int paddingWidth) {
|
|
|
|
|
|
|
|
int inputChannels = imShape[0];
|
|
|
|
|
|
|
|
int inputHeight = imShape[1];
|
|
|
|
|
|
|
|
int inputWidth = imShape[2];
|
|
|
|
|
|
|
|
int filterHeight = colShape[3];
|
|
|
|
|
|
|
|
int filterWidth = colShape[4];
|
|
|
|
|
|
|
|
int outputHeight = colShape[0];
|
|
|
|
|
|
|
|
int outputWidth = colShape[1];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
size_t numKernels = inputChannels * (inputHeight + 2*paddingHeight)
|
|
|
|
|
|
|
|
* (inputWidth + 2*paddingWidth);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
size_t blocks = (numKernels + 1024 -1) / 1024;
|
|
|
|
|
|
|
|
size_t blockX = 512;
|
|
|
|
|
|
|
|
size_t blockY = (blocks+512-1)/512;
|
|
|
|
|
|
|
|
dim3 threads(1024, 1);
|
|
|
|
|
|
|
|
dim3 grid(blockX, blockY);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// To avoid involving atomic operations, we will launch one kernel per
|
|
|
|
|
|
|
|
// bottom dimension, and then in the kernel add up the top dimensions.
|
|
|
|
|
|
|
|
col2im<T><<< grid, threads, 0, STREAM_DEFAULT >>>
|
|
|
|
|
|
|
|
(numKernels,
|
|
|
|
|
|
|
|
colData,
|
|
|
|
|
|
|
|
inputHeight + 2*paddingHeight,
|
|
|
|
|
|
|
|
inputWidth + 2*paddingWidth,
|
|
|
|
|
|
|
|
inputChannels,
|
|
|
|
|
|
|
|
filterHeight,
|
|
|
|
|
|
|
|
filterWidth,
|
|
|
|
|
|
|
|
strideHeight,
|
|
|
|
|
|
|
|
strideWidth,
|
|
|
|
|
|
|
|
paddingHeight,
|
|
|
|
|
|
|
|
paddingWidth,
|
|
|
|
|
|
|
|
outputHeight,
|
|
|
|
|
|
|
|
outputWidth,
|
|
|
|
|
|
|
|
imData);
|
|
|
|
|
|
|
|
CHECK_SYNC("Col2ImFunctor GPU failed");
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template class Im2ColFunctor<kCFO, DEVICE_TYPE_GPU, float>;
|
|
|
|
|
|
|
|
template class Im2ColFunctor<kCFO, DEVICE_TYPE_GPU, double>;
|
|
|
|
|
|
|
|
template class Col2ImFunctor<kCFO, DEVICE_TYPE_GPU, float>;
|
|
|
|
|
|
|
|
template class Col2ImFunctor<kCFO, DEVICE_TYPE_GPU, double>;
|
|
|
|
|
|
|
|
|
|
|
|
template<class T>
|
|
|
|
template<class T>
|
|
|
|
__global__
|
|
|
|
__global__
|
|
|
|
void im2colOCF(const T* imData, T* colData,
|
|
|
|
void im2colOCF(const T* imData, T* colData,
|
|
|
|