|
|
@ -3876,7 +3876,7 @@ def recurrent_layer(input,
|
|
|
|
:type input: LayerOutput
|
|
|
|
:type input: LayerOutput
|
|
|
|
:param act: Activation type. TanhActivation is the default activation.
|
|
|
|
:param act: Activation type. TanhActivation is the default activation.
|
|
|
|
:type act: BaseActivation
|
|
|
|
:type act: BaseActivation
|
|
|
|
:param bias_attr: The parameter attribute for bias. If this parameter is set to
|
|
|
|
:param bias_attr: The parameter attribute for bias. If this parameter is set to
|
|
|
|
False or an object whose type is not ParameterAttribute,
|
|
|
|
False or an object whose type is not ParameterAttribute,
|
|
|
|
no bias is defined. If the parameter is set to True,
|
|
|
|
no bias is defined. If the parameter is set to True,
|
|
|
|
the bias is initialized to zero.
|
|
|
|
the bias is initialized to zero.
|
|
|
@ -7307,8 +7307,7 @@ def factorization_machine(input,
|
|
|
|
each latent vector is k.
|
|
|
|
each latent vector is k.
|
|
|
|
|
|
|
|
|
|
|
|
For details of Factorization Machine, please refer to the paper:
|
|
|
|
For details of Factorization Machine, please refer to the paper:
|
|
|
|
Rendle, Steffen. Factorization machines. IEEE 10th International
|
|
|
|
Factorization machines.
|
|
|
|
Conference on Data Mining (ICDM). IEEE, 2010.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
.. code-block:: python
|
|
|
|
factor_machine = factorization_machine(input=input_layer, factor_size=10)
|
|
|
|
factor_machine = factorization_machine(input=input_layer, factor_size=10)
|
|
|
|