Merge pull request #14950 from colourful-tree/develop
add teacher student sigmoid lossrevert-15207-remove_op_handle_lock_and_fix_var
commit
d5a8909131
@ -0,0 +1,162 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/teacher_student_sigmoid_loss_op.h"
|
||||
#include "paddle/fluid/operators/math/math_function.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
class TeacherStudentSigmoidLossOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null.");
|
||||
|
||||
auto x_dims = ctx->GetInputDim("X");
|
||||
auto label_dims = ctx->GetInputDim("Label");
|
||||
PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, "Input(X)'s rank should be 2.");
|
||||
PADDLE_ENFORCE_EQ(label_dims.size(), 2UL,
|
||||
"Input(Label)'s rank should be 2.");
|
||||
PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
|
||||
"The 1st dimension of Input(X) and Input(Label) should "
|
||||
"be equal.");
|
||||
PADDLE_ENFORCE_EQ(label_dims[1], 1UL,
|
||||
"The 2nd dimension of "
|
||||
"Input(Label) should be 1.");
|
||||
ctx->SetOutputDim("Y", {x_dims[0], 1});
|
||||
ctx->ShareLoD("X", /*->*/ "Y");
|
||||
}
|
||||
|
||||
protected:
|
||||
// Explicitly set that the data type of computation kernel of
|
||||
// teacher_student_sigmoid_loss
|
||||
// is determined by its input "X".
|
||||
framework::OpKernelType GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const override {
|
||||
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
|
||||
ctx.device_context());
|
||||
}
|
||||
};
|
||||
|
||||
class TeacherStudentSigmoidLossGradientOp
|
||||
: public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
|
||||
"Input(Y@GRAD) should be not null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
|
||||
"Output(X@GRAD) should be not null.");
|
||||
|
||||
auto x_dims = ctx->GetInputDim("X");
|
||||
auto label_dims = ctx->GetInputDim("Label");
|
||||
auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
|
||||
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
|
||||
PADDLE_ENFORCE_EQ(dy_dims.size(), 2, "Input(Y@Grad)'s rank should be 2.");
|
||||
PADDLE_ENFORCE_EQ(label_dims.size(), 2, "Input(Label)'s rank should be 2.");
|
||||
PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
|
||||
"The 1st dimension of Input(X) and Input(Label) should "
|
||||
"be equal.");
|
||||
PADDLE_ENFORCE_EQ(x_dims[0], dy_dims[0],
|
||||
"The 1st dimension of Input(X) and Input(Y@Grad) should "
|
||||
"be equal.");
|
||||
PADDLE_ENFORCE_EQ(dy_dims[1], 1,
|
||||
"The 2nd dimension of Input(Y@Grad) should be 1.");
|
||||
PADDLE_ENFORCE_EQ(label_dims[1], 1,
|
||||
"When Attr(soft_label) == false, the 2nd dimension of "
|
||||
"Input(Label) should be 1.");
|
||||
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
|
||||
ctx->ShareLoD("X", framework::GradVarName("X"));
|
||||
}
|
||||
|
||||
protected:
|
||||
// Explicitly set that the data type of computation kernel of
|
||||
// teacher_student_sigmoid_loss
|
||||
// is determined by its input "X".
|
||||
framework::OpKernelType GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const override {
|
||||
return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
|
||||
ctx.device_context());
|
||||
}
|
||||
};
|
||||
|
||||
class TeacherStudentSigmoidLossOpMaker
|
||||
: public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
void Make() override {
|
||||
AddInput("X",
|
||||
"(Tensor, default Tensor<float>), a 2-D tensor with shape [N x 1],"
|
||||
" where N is the batch size and D is the output. "
|
||||
"This input is a probability computed by the previous operator, "
|
||||
"which is almost always the result of a softmax operator.");
|
||||
AddInput("Label",
|
||||
"(Tensor), the ground truth which is a 2-D tensor. "
|
||||
"Label is a Tensor<float> with shape [N x 1]. ");
|
||||
AddOutput("Y",
|
||||
"(Tensor, default Tensor<float>), a 2-D tensor with shape "
|
||||
"[N x 1]. The teacher student sigmoid loss.");
|
||||
AddAttr<float>(
|
||||
"soft_max_up_bound",
|
||||
"fp32, if input > soft_max_up_bound, will be bound, default 15.0")
|
||||
.SetDefault(15.0);
|
||||
AddAttr<float>(
|
||||
"soft_max_lower_bound",
|
||||
"fp32, if input < soft_max_lower_bound, will be bound, default -15.0")
|
||||
.SetDefault(-15.0);
|
||||
AddComment(R"DOC(
|
||||
TeacherStudentSigmoidLoss Operator.
|
||||
|
||||
It's similarity to SigmoidCrossEntropyWithLogits Operator. The difference is that
|
||||
we add another label(z') to original.
|
||||
loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))
|
||||
z is click or not
|
||||
z' is teacher value
|
||||
label = {-2, -1, [0, 2]}
|
||||
when z' is not exist, clk = 0 : label = -2;
|
||||
when z' is not exist, clk = 1 : label = -1;
|
||||
when z' is exist , clk = 0 : label = 0 + z';
|
||||
when z' is exist , clk = 1 : label = 1 + z';
|
||||
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OPERATOR(teacher_student_sigmoid_loss,
|
||||
ops::TeacherStudentSigmoidLossOp,
|
||||
ops::TeacherStudentSigmoidLossOpMaker,
|
||||
paddle::framework::DefaultGradOpDescMaker<true>);
|
||||
|
||||
REGISTER_OPERATOR(teacher_student_sigmoid_loss_grad,
|
||||
ops::TeacherStudentSigmoidLossGradientOp);
|
||||
|
||||
REGISTER_OP_CPU_KERNEL(teacher_student_sigmoid_loss,
|
||||
ops::TeacherStudentSigmoidLossOpKernel<float>,
|
||||
ops::TeacherStudentSigmoidLossOpKernel<double>);
|
||||
|
||||
REGISTER_OP_CPU_KERNEL(teacher_student_sigmoid_loss_grad,
|
||||
ops::TeacherStudentSigmoidLossGradOpKernel<float>,
|
||||
ops::TeacherStudentSigmoidLossGradOpKernel<double>);
|
@ -0,0 +1,118 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/fluid/framework/eigen.h"
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
template <typename T>
|
||||
class TeacherStudentSigmoidLossOpKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
Tensor* y = context.Output<Tensor>("Y");
|
||||
const Tensor* x = context.Input<Tensor>("X");
|
||||
const Tensor* labels = context.Input<Tensor>("Label");
|
||||
T* y_data = y->mutable_data<T>(context.GetPlace());
|
||||
const T* x_data = x->data<T>();
|
||||
const T* label_data = labels->data<T>();
|
||||
int64_t batch_size = x->dims()[0];
|
||||
// loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' +
|
||||
// log(1 + exp(-abs(x)))
|
||||
// z is click or not
|
||||
// z' is value q of feed_fine
|
||||
// label = {-2, -1, [0, 2]}
|
||||
// when z' is not exist, clk = 0 : label = -2;
|
||||
// when z' is not exist, clk = 1 : label = -1;
|
||||
// when z' is exist , clk = 0 : label = 0 + z';
|
||||
// when z' is exist , clk = 1 : label = 1 + z';
|
||||
for (int i = 0; i < batch_size; ++i) {
|
||||
if (label_data[i] < -1.0) {
|
||||
y_data[i] = (x_data[i] > 0 ? x_data[i] : 0.0) +
|
||||
log(1.0 + exp(-fabs(x_data[i])));
|
||||
} else if (label_data[i] < 0.0) {
|
||||
y_data[i] = (x_data[i] > 0 ? x_data[i] : 0.0) - x_data[i] +
|
||||
log(1.0 + exp(-fabs(x_data[i])));
|
||||
} else if (label_data[i] < 1.0) {
|
||||
y_data[i] = (x_data[i] > 0 ? x_data[i] : 0.0) +
|
||||
log(1.0 + exp(-fabs(x_data[i]))) +
|
||||
(x_data[i] > 0 ? x_data[i] : 0.0) -
|
||||
x_data[i] * label_data[i] +
|
||||
log(1.0 + exp(-fabs(x_data[i])));
|
||||
} else {
|
||||
y_data[i] = (x_data[i] > 0 ? x_data[i] : 0.0) - x_data[i] +
|
||||
log(1.0 + exp(-fabs(x_data[i]))) +
|
||||
(x_data[i] > 0 ? x_data[i] : 0.0) -
|
||||
x_data[i] * (label_data[i] - 1.0) +
|
||||
log(1.0 + exp(-fabs(x_data[i])));
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class TeacherStudentSigmoidLossGradOpKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
const Tensor* x = context.Input<Tensor>("X");
|
||||
const T* x_data = x->data<T>();
|
||||
|
||||
Tensor* dx = context.Output<Tensor>(framework::GradVarName("X"));
|
||||
T* dx_data = dx->mutable_data<T>(context.GetPlace());
|
||||
|
||||
const Tensor* labels = context.Input<Tensor>("Label");
|
||||
const T* label_data = labels->data<T>();
|
||||
|
||||
T soft_max_up_bound =
|
||||
static_cast<T>(context.Attr<float>("soft_max_up_bound"));
|
||||
T soft_max_lower_bound =
|
||||
static_cast<T>(context.Attr<float>("soft_max_lower_bound"));
|
||||
|
||||
int64_t batch_size = x->dims()[0];
|
||||
|
||||
const framework::Tensor* dOut =
|
||||
context.Input<framework::Tensor>(framework::GradVarName("Y"));
|
||||
|
||||
const T* dout_data = dOut->data<T>();
|
||||
|
||||
for (int i = 0; i < batch_size; ++i) {
|
||||
T sum_val = x_data[i];
|
||||
if (sum_val > soft_max_up_bound) {
|
||||
sum_val = soft_max_up_bound;
|
||||
} else {
|
||||
if (sum_val < soft_max_lower_bound) {
|
||||
sum_val = soft_max_lower_bound;
|
||||
}
|
||||
}
|
||||
|
||||
T pred = 1.0 / (1.0 + exp(-sum_val));
|
||||
if (label_data[i] < -1.0) {
|
||||
dx_data[i] = 0.0 - pred;
|
||||
} else if (label_data[i] < 0.0) {
|
||||
dx_data[i] = 1.0 - pred;
|
||||
} else {
|
||||
dx_data[i] = label_data[i] - 2.0 * pred;
|
||||
}
|
||||
if (sum_val >= soft_max_up_bound || sum_val <= soft_max_lower_bound) {
|
||||
dx_data[i] = 0;
|
||||
}
|
||||
dx_data[i] *= dout_data[i] * -1;
|
||||
}
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,59 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
from math import log
|
||||
from math import exp
|
||||
from op_test import OpTest
|
||||
from scipy.special import logit
|
||||
from scipy.special import expit
|
||||
import unittest
|
||||
|
||||
|
||||
class TestTeacherStudentSigmoidLossOp(OpTest):
|
||||
"""
|
||||
Test teacher_student_sigmoid_loss with discrete one-hot labels.
|
||||
"""
|
||||
|
||||
def setUp(self):
|
||||
self.op_type = "teacher_student_sigmoid_loss"
|
||||
batch_size = 16
|
||||
num_classes = 1
|
||||
self.inputs = {
|
||||
'X': logit(
|
||||
np.random.uniform(0, 1, (batch_size, num_classes))
|
||||
.astype("float32")),
|
||||
'Label': np.random.uniform(0, 2, (batch_size, num_classes))
|
||||
.astype("float32")
|
||||
}
|
||||
outs = []
|
||||
for index, label in enumerate(self.inputs["Label"]):
|
||||
x = self.inputs["X"][index]
|
||||
if label < -1.0:
|
||||
outs.append(max(x, 0.0) + log(1.0 + exp(-abs(x))))
|
||||
elif label < 0.0:
|
||||
outs.append(max(x, 0.0) - x + log(1.0 + exp(-abs(x))))
|
||||
elif label < 1.0:
|
||||
outs.append(max(x, 0.0) + log(1.0 + exp(-abs(x))) + \
|
||||
max(x, 0.0) - x * label + log(1.0 + exp(-abs(x))))
|
||||
else:
|
||||
outs.append(max(x, 0.0) - x + log(1.0 + exp(-abs(x))) + \
|
||||
max(x, 0.0) - x * (label - 1.0) + log(1.0 + exp(-abs(x))))
|
||||
self.outputs = {'Y': np.array(outs)}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(["X"], "Y", numeric_grad_delta=0.005)
|
Loading…
Reference in new issue