While op forward for sentimental analysis (#6140)
* Add DataFeeder A v2 API like data feeder for book demos. We can feed data directly from reader. * Fix CI * Add an unittest for while/rnn op forward * Add unittest for raw while op backward * Fix CIrelease/0.11.0
parent
1fe05c458f
commit
d5e3279451
@ -0,0 +1,87 @@
|
||||
import paddle.v2.fluid as fluid
|
||||
import paddle.v2 as paddle
|
||||
import unittest
|
||||
import numpy
|
||||
|
||||
|
||||
class TestDynRNN(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.word_dict = paddle.dataset.imdb.word_dict()
|
||||
self.BATCH_SIZE = 100
|
||||
self.train_data = paddle.batch(
|
||||
paddle.dataset.imdb.train(self.word_dict),
|
||||
batch_size=self.BATCH_SIZE)
|
||||
|
||||
def test_plain_while_op(self):
|
||||
main_program = fluid.Program()
|
||||
startup_program = fluid.Program()
|
||||
|
||||
with fluid.program_guard(main_program, startup_program):
|
||||
sentence = fluid.layers.data(
|
||||
name='word', shape=[1], dtype='int64', lod_level=1)
|
||||
sent_emb = fluid.layers.embedding(
|
||||
input=sentence, size=[len(self.word_dict), 32], dtype='float32')
|
||||
|
||||
label = fluid.layers.data(name='label', shape=[1], dtype='float32')
|
||||
|
||||
rank_table = fluid.layers.lod_rank_table(x=sent_emb)
|
||||
|
||||
sent_emb_array = fluid.layers.lod_tensor_to_array(
|
||||
x=sent_emb, table=rank_table)
|
||||
|
||||
seq_len = fluid.layers.max_sequence_len(rank_table=rank_table)
|
||||
i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
|
||||
i.stop_gradient = False
|
||||
|
||||
boot_mem = fluid.layers.fill_constant_batch_size_like(
|
||||
input=fluid.layers.array_read(
|
||||
array=sent_emb_array, i=i),
|
||||
value=0,
|
||||
shape=[-1, 100],
|
||||
dtype='float32')
|
||||
boot_mem.stop_gradient = False
|
||||
|
||||
mem_array = fluid.layers.array_write(x=boot_mem, i=i)
|
||||
|
||||
cond = fluid.layers.less_than(x=i, y=seq_len)
|
||||
cond.stop_gradient = False
|
||||
while_op = fluid.layers.While(cond=cond)
|
||||
out = fluid.layers.create_array(dtype='float32')
|
||||
|
||||
with while_op.block():
|
||||
mem = fluid.layers.array_read(array=mem_array, i=i)
|
||||
ipt = fluid.layers.array_read(array=sent_emb_array, i=i)
|
||||
|
||||
mem = fluid.layers.shrink_memory(x=mem, i=i, table=rank_table)
|
||||
|
||||
hidden = fluid.layers.fc(input=[mem, ipt], size=100, act='tanh')
|
||||
fluid.layers.array_write(x=hidden, i=i, array=out)
|
||||
fluid.layers.increment(x=i, in_place=True)
|
||||
fluid.layers.array_write(x=hidden, i=i, array=mem_array)
|
||||
fluid.layers.less_than(x=i, y=seq_len, cond=cond)
|
||||
|
||||
all_timesteps = fluid.layers.array_to_lod_tensor(
|
||||
x=out, table=rank_table)
|
||||
last = fluid.layers.sequence_pool(
|
||||
input=all_timesteps, pool_type='last')
|
||||
logits = fluid.layers.fc(input=last, size=1, act=None)
|
||||
loss = fluid.layers.sigmoid_cross_entropy_with_logits(
|
||||
x=logits, label=label)
|
||||
loss = fluid.layers.mean(x=loss)
|
||||
sgd = fluid.optimizer.SGD(1e-4)
|
||||
sgd.minimize(loss=loss)
|
||||
cpu = fluid.CPUPlace()
|
||||
exe = fluid.Executor(cpu)
|
||||
exe.run(startup_program)
|
||||
feeder = fluid.DataFeeder(feed_list=[sentence, label], place=cpu)
|
||||
|
||||
data = next(self.train_data())
|
||||
val = exe.run(main_program, feed=feeder.feed(data),
|
||||
fetch_list=[loss])[0]
|
||||
self.assertEqual((1, ), val.shape)
|
||||
print(val)
|
||||
self.assertFalse(numpy.isnan(val))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue