parent
91115ab6de
commit
d6c62e852d
@ -1,39 +1,67 @@
|
||||
import sklearn.datasets.mldata
|
||||
import sklearn.model_selection
|
||||
import paddle.v2.dataset.common
|
||||
import subprocess
|
||||
import numpy
|
||||
from common import DATA_HOME
|
||||
|
||||
__all__ = ['train_creator', 'test_creator']
|
||||
URL_PREFIX = 'http://yann.lecun.com/exdb/mnist/'
|
||||
|
||||
TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz'
|
||||
TEST_IMAGE_MD5 = '25e3cc63507ef6e98d5dc541e8672bb6'
|
||||
|
||||
def __mnist_reader_creator__(data, target):
|
||||
def reader():
|
||||
n_samples = data.shape[0]
|
||||
for i in xrange(n_samples):
|
||||
yield (data[i] / 255.0).astype(numpy.float32), int(target[i])
|
||||
TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz'
|
||||
TEST_LABEL_MD5 = '4e9511fe019b2189026bd0421ba7b688'
|
||||
|
||||
TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz'
|
||||
TRAIN_IMAGE_MD5 = 'f68b3c2dcbeaaa9fbdd348bbdeb94873'
|
||||
|
||||
return reader
|
||||
TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz'
|
||||
TRAIN_LABEL_MD5 = 'd53e105ee54ea40749a09fcbcd1e9432'
|
||||
|
||||
|
||||
TEST_SIZE = 10000
|
||||
def reader_creator(image_filename, label_filename, buffer_size):
|
||||
def reader():
|
||||
# According to http://stackoverflow.com/a/38061619/724872, we
|
||||
# cannot use standard package gzip here.
|
||||
m = subprocess.Popen(["zcat", image_filename], stdout=subprocess.PIPE)
|
||||
m.stdout.read(16) # skip some magic bytes
|
||||
|
||||
l = subprocess.Popen(["zcat", label_filename], stdout=subprocess.PIPE)
|
||||
l.stdout.read(8) # skip some magic bytes
|
||||
|
||||
data = sklearn.datasets.mldata.fetch_mldata(
|
||||
"MNIST original", data_home=DATA_HOME)
|
||||
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
|
||||
data.data, data.target, test_size=TEST_SIZE, random_state=0)
|
||||
while True:
|
||||
labels = numpy.fromfile(
|
||||
l.stdout, 'ubyte', count=buffer_size
|
||||
).astype("int")
|
||||
|
||||
if labels.size != buffer_size:
|
||||
break # numpy.fromfile returns empty slice after EOF.
|
||||
|
||||
def train_creator():
|
||||
return __mnist_reader_creator__(X_train, y_train)
|
||||
images = numpy.fromfile(
|
||||
m.stdout, 'ubyte', count=buffer_size * 28 * 28
|
||||
).reshape((buffer_size, 28 * 28)
|
||||
).astype('float32')
|
||||
|
||||
images = images / 255.0 * 2.0 - 1.0
|
||||
|
||||
def test_creator():
|
||||
return __mnist_reader_creator__(X_test, y_test)
|
||||
for i in xrange(buffer_size):
|
||||
yield images[i, :], labels[i]
|
||||
|
||||
m.terminate()
|
||||
l.terminate()
|
||||
|
||||
def unittest():
|
||||
assert len(list(test_creator()())) == TEST_SIZE
|
||||
return reader()
|
||||
|
||||
def train():
|
||||
return reader_creator(
|
||||
paddle.v2.dataset.common.download(
|
||||
TRAIN_IMAGE_URL, 'mnist', TRAIN_IMAGE_MD5),
|
||||
paddle.v2.dataset.common.download(
|
||||
TRAIN_LABEL_URL, 'mnist', TRAIN_LABEL_MD5),
|
||||
100)
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest()
|
||||
def test():
|
||||
return reader_creator(
|
||||
paddle.v2.dataset.common.download(
|
||||
TEST_IMAGE_URL, 'mnist', TEST_IMAGE_MD5),
|
||||
paddle.v2.dataset.common.download(
|
||||
TEST_LABEL_URL, 'mnist', TEST_LABEL_MD5),
|
||||
100)
|
||||
|
@ -0,0 +1,27 @@
|
||||
import paddle.v2.dataset.mnist
|
||||
import unittest
|
||||
|
||||
class TestMNIST(unittest.TestCase):
|
||||
def check_reader(self, reader):
|
||||
sum = 0
|
||||
for l in reader:
|
||||
self.assertEqual(l[0].size, 784)
|
||||
self.assertEqual(l[1].size, 1)
|
||||
self.assertLess(l[1], 10)
|
||||
self.assertGreaterEqual(l[1], 0)
|
||||
sum += 1
|
||||
return sum
|
||||
|
||||
def test_train(self):
|
||||
self.assertEqual(
|
||||
self.check_reader(paddle.v2.dataset.mnist.train()),
|
||||
60000)
|
||||
|
||||
def test_test(self):
|
||||
self.assertEqual(
|
||||
self.check_reader(paddle.v2.dataset.mnist.test()),
|
||||
10000)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue