Merge pull request #13663 from luotao1/resnet50_ut
add resnet50 inference unit-testrevert-13637-optimize-opyreader
commit
d770b9bda3
@ -0,0 +1,96 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include "paddle/fluid/inference/tests/api/tester_helper.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace inference {
|
||||
namespace analysis {
|
||||
|
||||
void SetConfig(AnalysisConfig *cfg) {
|
||||
cfg->param_file = FLAGS_infer_model + "/params";
|
||||
cfg->prog_file = FLAGS_infer_model + "/model";
|
||||
cfg->use_gpu = false;
|
||||
cfg->device = 0;
|
||||
cfg->enable_ir_optim = true;
|
||||
cfg->specify_input_name = true;
|
||||
}
|
||||
|
||||
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
|
||||
PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
|
||||
|
||||
PaddleTensor input;
|
||||
// channel=3, height/width=318
|
||||
std::vector<int> shape({FLAGS_batch_size, 3, 318, 318});
|
||||
input.shape = shape;
|
||||
input.dtype = PaddleDType::FLOAT32;
|
||||
|
||||
// fill input data, for profile easily, do not use random data here.
|
||||
size_t size = FLAGS_batch_size * 3 * 318 * 318;
|
||||
input.data.Resize(size * sizeof(float));
|
||||
float *input_data = static_cast<float *>(input.data.data());
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
*(input_data + i) = static_cast<float>(i) / size;
|
||||
}
|
||||
|
||||
std::vector<PaddleTensor> input_slots;
|
||||
input_slots.assign({input});
|
||||
(*inputs).emplace_back(input_slots);
|
||||
}
|
||||
|
||||
// Easy for profiling independently.
|
||||
TEST(Analyzer_resnet50, profile) {
|
||||
AnalysisConfig cfg;
|
||||
SetConfig(&cfg);
|
||||
std::vector<PaddleTensor> outputs;
|
||||
|
||||
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
||||
SetInput(&input_slots_all);
|
||||
TestPrediction(cfg, input_slots_all, &outputs, FLAGS_num_threads);
|
||||
|
||||
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
|
||||
PADDLE_ENFORCE_EQ(outputs.size(), 1UL);
|
||||
size_t size = GetSize(outputs[0]);
|
||||
// output is a 512-dimension feature
|
||||
EXPECT_EQ(size, 512 * FLAGS_batch_size);
|
||||
}
|
||||
}
|
||||
|
||||
// Check the fuse status
|
||||
TEST(Analyzer_resnet50, fuse_statis) {
|
||||
AnalysisConfig cfg;
|
||||
SetConfig(&cfg);
|
||||
int num_ops;
|
||||
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
|
||||
auto fuse_statis = GetFuseStatis(
|
||||
static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
|
||||
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
|
||||
EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
|
||||
}
|
||||
|
||||
// Compare result of NativeConfig and AnalysisConfig
|
||||
TEST(Analyzer_resnet50, compare) {
|
||||
AnalysisConfig cfg;
|
||||
SetConfig(&cfg);
|
||||
|
||||
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
||||
SetInput(&input_slots_all);
|
||||
CompareNativeAndAnalysis(cfg, input_slots_all);
|
||||
}
|
||||
|
||||
} // namespace analysis
|
||||
} // namespace inference
|
||||
} // namespace paddle
|
Loading…
Reference in new issue