|
|
@ -14,7 +14,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
#define EIGEN_USE_GPU
|
|
|
|
#define EIGEN_USE_GPU
|
|
|
|
#include "paddle/operators/adagrad_op.h"
|
|
|
|
#include "paddle/operators/adagrad_op.h"
|
|
|
|
|
|
|
|
#include "paddle/operators/math/selected_rows_functor.h"
|
|
|
|
|
|
|
|
#include "paddle/operators/math/math_function.h"
|
|
|
|
|
|
|
|
#include "paddle/platform/cuda_helper.h"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
|
|
|
|
namespace operators {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T, int block_size>
|
|
|
|
|
|
|
|
__global__ void MergeGradKernel(const T* grad, const int64_t* grad_rows,
|
|
|
|
|
|
|
|
T* grad_merge, const int64_t* grad_merge_rows,
|
|
|
|
|
|
|
|
size_t grad_merge_rows_size,
|
|
|
|
|
|
|
|
int64_t row_numel) {
|
|
|
|
|
|
|
|
const int ty = blockIdx.y;
|
|
|
|
|
|
|
|
int tid = threadIdx.x;
|
|
|
|
|
|
|
|
__shared__ size_t grad_merge_idx;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (tid == 0) {
|
|
|
|
|
|
|
|
for (size_t i = 0; i < grad_merge_rows_size; i++) {
|
|
|
|
|
|
|
|
if (grad_rows[ty] == grad_merge_rows[i]) {
|
|
|
|
|
|
|
|
grad_merge_idx = i;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
grad += ty * row_numel;
|
|
|
|
|
|
|
|
grad_merge += grad_merge_idx * row_numel;
|
|
|
|
|
|
|
|
for (int index = tid; index < row_numel; index += block_size) {
|
|
|
|
|
|
|
|
paddle::platform::CudaAtomicAdd(grad_merge + index, grad[index]);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T, int block_size>
|
|
|
|
|
|
|
|
__global__ void SparseAdagradFunctorKernel(const T* grad, const int64_t* rows,
|
|
|
|
|
|
|
|
const T* learning_rate, T* param,
|
|
|
|
|
|
|
|
T* moment, int64_t row_numel,
|
|
|
|
|
|
|
|
T epsilon) {
|
|
|
|
|
|
|
|
const int ty = blockIdx.y;
|
|
|
|
|
|
|
|
int tid = threadIdx.x;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
grad += ty * row_numel;
|
|
|
|
|
|
|
|
param += rows[ty] * row_numel;
|
|
|
|
|
|
|
|
moment += rows[ty] * row_numel;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (int index = tid; index < row_numel; index += block_size) {
|
|
|
|
|
|
|
|
// Since index in rows of SelectedRows can be duplicate, we have to use
|
|
|
|
|
|
|
|
// Atomic Operation to avoid concurrent write error.
|
|
|
|
|
|
|
|
paddle::platform::CudaAtomicAdd(param + index,
|
|
|
|
|
|
|
|
-1.0 * learning_rate[0] * grad[index] /
|
|
|
|
|
|
|
|
(sqrt(moment[index]) + epsilon));
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
|
|
|
struct SparseAdagradFunctor<platform::GPUPlace, T> {
|
|
|
|
|
|
|
|
void operator()(const platform::DeviceContext& context,
|
|
|
|
|
|
|
|
const framework::SelectedRows& grad,
|
|
|
|
|
|
|
|
const framework::Tensor& learning_rate, T epsilon,
|
|
|
|
|
|
|
|
framework::Tensor* moment, framework::Tensor* param) {
|
|
|
|
|
|
|
|
// 1. g_m.rows = set(g.rows)
|
|
|
|
|
|
|
|
auto grad_rows = grad.rows();
|
|
|
|
|
|
|
|
std::set<int64_t> row_set(grad_rows.begin(), grad_rows.end());
|
|
|
|
|
|
|
|
std::vector<int64_t> merge_rows(row_set.begin(), row_set.end());
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
auto grad_width = grad.value().dims()[1];
|
|
|
|
|
|
|
|
std::unique_ptr<framework::SelectedRows> grad_merge{
|
|
|
|
|
|
|
|
new framework::SelectedRows()};
|
|
|
|
|
|
|
|
grad_merge->set_rows(merge_rows);
|
|
|
|
|
|
|
|
grad_merge->set_height(grad.height());
|
|
|
|
|
|
|
|
grad_merge->mutable_value()->mutable_data<T>(
|
|
|
|
|
|
|
|
framework::make_ddim(
|
|
|
|
|
|
|
|
{static_cast<int64_t>(merge_rows.size()), grad_width}),
|
|
|
|
|
|
|
|
context.GetPlace());
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
math::SetConstant<platform::GPUPlace, T> constant_functor;
|
|
|
|
|
|
|
|
constant_functor(context, grad_merge->mutable_value(), 0.0);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
auto* grad_merge_data = grad_merge->mutable_value()->data<T>();
|
|
|
|
|
|
|
|
auto* grad_data = grad.value().data<T>();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const int block_size = 256;
|
|
|
|
|
|
|
|
dim3 threads(block_size, 1);
|
|
|
|
|
|
|
|
dim3 grid1(1, grad_rows.size());
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MergeGradKernel<
|
|
|
|
|
|
|
|
T, 256><<<grid1, threads, 0,
|
|
|
|
|
|
|
|
reinterpret_cast<const platform::CUDADeviceContext&>(context)
|
|
|
|
|
|
|
|
.stream()>>>(grad_data, grad.rows().data(),
|
|
|
|
|
|
|
|
grad_merge_data, grad_merge->rows().data(),
|
|
|
|
|
|
|
|
grad_merge->rows().size(), grad_width);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// 2. m += g_m * g_m
|
|
|
|
|
|
|
|
std::unique_ptr<framework::SelectedRows> grad_square{
|
|
|
|
|
|
|
|
new framework::SelectedRows()};
|
|
|
|
|
|
|
|
grad_square->set_rows(grad_merge->rows());
|
|
|
|
|
|
|
|
grad_square->set_height(grad_merge->height());
|
|
|
|
|
|
|
|
grad_square->mutable_value()->mutable_data<T>(grad_merge->value().dims(),
|
|
|
|
|
|
|
|
context.GetPlace());
|
|
|
|
|
|
|
|
auto gs =
|
|
|
|
|
|
|
|
framework::EigenVector<T>::Flatten(*(grad_square->mutable_value()));
|
|
|
|
|
|
|
|
auto gm = framework::EigenVector<T>::Flatten(grad_merge->value());
|
|
|
|
|
|
|
|
gs.device(*context.GetEigenDevice<platform::GPUPlace>()) = gm * gm;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
math::SelectedRowsAddToTensor<platform::GPUPlace, T> functor;
|
|
|
|
|
|
|
|
functor(context, *grad_square, moment);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// 3. update parameter
|
|
|
|
|
|
|
|
auto* lr = learning_rate.data<T>();
|
|
|
|
|
|
|
|
auto* param_data = param->data<T>();
|
|
|
|
|
|
|
|
auto* moment_data = moment->data<T>();
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dim3 grid2(1, merge_rows.size());
|
|
|
|
|
|
|
|
SparseAdagradFunctorKernel<
|
|
|
|
|
|
|
|
T, 256><<<grid2, threads, 0,
|
|
|
|
|
|
|
|
reinterpret_cast<const platform::CUDADeviceContext&>(context)
|
|
|
|
|
|
|
|
.stream()>>>(grad_merge_data, grad_merge->rows().data(),
|
|
|
|
|
|
|
|
lr, param_data,
|
|
|
|
|
|
|
|
moment_data, grad_width, epsilon);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template struct SparseAdagradFunctor<platform::GPUPlace, float>;
|
|
|
|
|
|
|
|
template struct SparseAdagradFunctor<platform::GPUPlace, double>;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} // namespace operators
|
|
|
|
|
|
|
|
} // namespace paddle
|
|
|
|
|
|
|
|
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_GPU_KERNEL(adagrad,
|
|
|
|
REGISTER_OP_GPU_KERNEL(
|
|
|
|
ops::AdagradOpKernel<paddle::platform::GPUPlace, float>);
|
|
|
|
adagrad, ops::AdagradOpKernel<paddle::platform::GPUPlace, float>,
|
|
|
|
|
|
|
|
ops::AdagradOpKernel<paddle::platform::GPUPlace, double>);
|
|
|
|