|
|
|
@ -866,7 +866,7 @@ def lstm_unit(x_t,
|
|
|
|
|
cell_t_prev,
|
|
|
|
|
forget_bias=0.0,
|
|
|
|
|
param_attr=None,
|
|
|
|
|
bias_attr=ParamAttr(),
|
|
|
|
|
bias_attr=None,
|
|
|
|
|
main_program=None,
|
|
|
|
|
startup_program=None):
|
|
|
|
|
"""Lstm unit layer. The equation of a lstm step is:
|
|
|
|
@ -909,8 +909,8 @@ def lstm_unit(x_t,
|
|
|
|
|
forget_bias (float): The forget bias of lstm unit.
|
|
|
|
|
param_attr (ParamAttr): The attributes of parameter weights, used to set
|
|
|
|
|
initializer, name etc.
|
|
|
|
|
bias_attr (ParamAttr): The attributes of bias weights, used to set
|
|
|
|
|
initializer, name etc.
|
|
|
|
|
bias_attr (ParamAttr): The attributes of bias weights, if not False,
|
|
|
|
|
bias weights will be created and be set to default value.
|
|
|
|
|
main_program (Program): The main program.
|
|
|
|
|
startup_program (Program): the startup program.
|
|
|
|
|
|
|
|
|
@ -949,6 +949,9 @@ def lstm_unit(x_t,
|
|
|
|
|
raise ValueError("The 1s dimension of x_t, hidden_t_prev and "
|
|
|
|
|
"cell_t_prev must be the same.")
|
|
|
|
|
|
|
|
|
|
if bias_attr is None:
|
|
|
|
|
bias_attr = ParamAttr()
|
|
|
|
|
|
|
|
|
|
size = cell_t_prev.shape[1]
|
|
|
|
|
concat_out = concat(
|
|
|
|
|
input=[x_t, hidden_t_prev],
|
|
|
|
|