[V1.3] Add the calibration tool code for int8 inference and focus test. (#15062)
* Add the calibration tool code for int8 inference and focus test. * Fix the calibration tool per the review comments. test=develop * Update the calibrator doc and remove extra line. * Fix the invalid is_negative_input attr set on Mobilenet. * Add the comments and fix the format issue. test=develop * Update the CMakelist.txt for Calibration PR.Disable the Calibration UT if not enable MKLDNN. test=develop * Update the CMakeList.txt. test=develop * Disable the test_calibration case on WIN and MAC. test=develop * Add the missing brackets. test=develop * Remove the outdated map operator which not supported on Python3. test=develop * Fix the style issue. test=develop * 1.Update the CMakeList.txt to disable calibration tool ut when the WITH_MKL is not set; 2.Add the workaround to enable the FLAGS_use_mkldnn for PR_CI(PADDLE). test=develop * Fix the typo and format the License header. test=develop * 1.Add and Update TODOs per review comments. 2.Code clean. test=developinference-pre-release-gpu
parent
b7b68f2a8c
commit
dbdaf15ca0
@ -0,0 +1,13 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
File diff suppressed because it is too large
Load Diff
@ -1,6 +1,10 @@
|
|||||||
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
|
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
|
||||||
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
|
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
|
||||||
|
|
||||||
|
if(APPLE OR WIN32 OR NOT WITH_MKL)
|
||||||
|
list(REMOVE_ITEM TEST_OPS test_calibration)
|
||||||
|
endif()
|
||||||
|
|
||||||
foreach(src ${TEST_OPS})
|
foreach(src ${TEST_OPS})
|
||||||
py_test(${src} SRCS ${src}.py)
|
py_test(${src} SRCS ${src}.py)
|
||||||
endforeach()
|
endforeach()
|
||||||
|
@ -0,0 +1,230 @@
|
|||||||
|
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
|
||||||
|
#
|
||||||
|
# licensed under the apache license, version 2.0 (the "license");
|
||||||
|
# you may not use this file except in compliance with the license.
|
||||||
|
# you may obtain a copy of the license at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/license-2.0
|
||||||
|
#
|
||||||
|
# unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the license is distributed on an "as is" basis,
|
||||||
|
# without warranties or conditions of any kind, either express or implied.
|
||||||
|
# see the license for the specific language governing permissions and
|
||||||
|
# limitations under the license.
|
||||||
|
import unittest
|
||||||
|
import os
|
||||||
|
import numpy as np
|
||||||
|
import time
|
||||||
|
import sys
|
||||||
|
import random
|
||||||
|
import paddle
|
||||||
|
import paddle.fluid as fluid
|
||||||
|
import argparse
|
||||||
|
import functools
|
||||||
|
import contextlib
|
||||||
|
import paddle.fluid.profiler as profiler
|
||||||
|
from PIL import Image, ImageEnhance
|
||||||
|
import math
|
||||||
|
sys.path.append('..')
|
||||||
|
import int8_inference.utility as ut
|
||||||
|
|
||||||
|
random.seed(0)
|
||||||
|
np.random.seed(0)
|
||||||
|
|
||||||
|
DATA_DIM = 224
|
||||||
|
|
||||||
|
THREAD = 1
|
||||||
|
BUF_SIZE = 102400
|
||||||
|
|
||||||
|
DATA_DIR = 'data/ILSVRC2012'
|
||||||
|
|
||||||
|
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
|
||||||
|
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
|
||||||
|
|
||||||
|
|
||||||
|
# TODO(guomingz): Remove duplicated code from line 45 ~ line 114
|
||||||
|
def resize_short(img, target_size):
|
||||||
|
percent = float(target_size) / min(img.size[0], img.size[1])
|
||||||
|
resized_width = int(round(img.size[0] * percent))
|
||||||
|
resized_height = int(round(img.size[1] * percent))
|
||||||
|
img = img.resize((resized_width, resized_height), Image.LANCZOS)
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
def crop_image(img, target_size, center):
|
||||||
|
width, height = img.size
|
||||||
|
size = target_size
|
||||||
|
if center == True:
|
||||||
|
w_start = (width - size) / 2
|
||||||
|
h_start = (height - size) / 2
|
||||||
|
else:
|
||||||
|
w_start = np.random.randint(0, width - size + 1)
|
||||||
|
h_start = np.random.randint(0, height - size + 1)
|
||||||
|
w_end = w_start + size
|
||||||
|
h_end = h_start + size
|
||||||
|
img = img.crop((w_start, h_start, w_end, h_end))
|
||||||
|
return img
|
||||||
|
|
||||||
|
|
||||||
|
def process_image(sample, mode, color_jitter, rotate):
|
||||||
|
img_path = sample[0]
|
||||||
|
|
||||||
|
img = Image.open(img_path)
|
||||||
|
|
||||||
|
img = resize_short(img, target_size=256)
|
||||||
|
img = crop_image(img, target_size=DATA_DIM, center=True)
|
||||||
|
|
||||||
|
if img.mode != 'RGB':
|
||||||
|
img = img.convert('RGB')
|
||||||
|
|
||||||
|
img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255
|
||||||
|
img -= img_mean
|
||||||
|
img /= img_std
|
||||||
|
|
||||||
|
return img, sample[1]
|
||||||
|
|
||||||
|
|
||||||
|
def _reader_creator(file_list,
|
||||||
|
mode,
|
||||||
|
shuffle=False,
|
||||||
|
color_jitter=False,
|
||||||
|
rotate=False,
|
||||||
|
data_dir=DATA_DIR):
|
||||||
|
def reader():
|
||||||
|
with open(file_list) as flist:
|
||||||
|
full_lines = [line.strip() for line in flist]
|
||||||
|
if shuffle:
|
||||||
|
np.random.shuffle(full_lines)
|
||||||
|
|
||||||
|
lines = full_lines
|
||||||
|
|
||||||
|
for line in lines:
|
||||||
|
img_path, label = line.split()
|
||||||
|
img_path = os.path.join(data_dir, img_path)
|
||||||
|
if not os.path.exists(img_path):
|
||||||
|
continue
|
||||||
|
yield img_path, int(label)
|
||||||
|
|
||||||
|
mapper = functools.partial(
|
||||||
|
process_image, mode=mode, color_jitter=color_jitter, rotate=rotate)
|
||||||
|
|
||||||
|
return paddle.reader.xmap_readers(mapper, reader, THREAD, BUF_SIZE)
|
||||||
|
|
||||||
|
|
||||||
|
def val(data_dir=DATA_DIR):
|
||||||
|
file_list = os.path.join(data_dir, 'val_list.txt')
|
||||||
|
return _reader_creator(file_list, 'val', shuffle=False, data_dir=data_dir)
|
||||||
|
|
||||||
|
|
||||||
|
class TestCalibration(unittest.TestCase):
|
||||||
|
def setUp(self):
|
||||||
|
# TODO(guomingz): Put the download process in the cmake.
|
||||||
|
# Download and unzip test data set
|
||||||
|
imagenet_dl_url = 'http://paddle-inference-dist.bj.bcebos.com/int8/calibration_test_data.tar.gz'
|
||||||
|
zip_file_name = imagenet_dl_url.split('/')[-1]
|
||||||
|
cmd = 'rm -rf data {} && mkdir data && wget {} && tar xvf {} -C data'.format(
|
||||||
|
zip_file_name, imagenet_dl_url, zip_file_name)
|
||||||
|
os.system(cmd)
|
||||||
|
# resnet50 fp32 data
|
||||||
|
resnet50_fp32_model_url = 'http://paddle-inference-dist.bj.bcebos.com/int8/resnet50_int8_model.tar.gz'
|
||||||
|
resnet50_zip_name = resnet50_fp32_model_url.split('/')[-1]
|
||||||
|
resnet50_unzip_folder_name = 'resnet50_fp32'
|
||||||
|
cmd = 'rm -rf {} {} && mkdir {} && wget {} && tar xvf {} -C {}'.format(
|
||||||
|
resnet50_unzip_folder_name, resnet50_zip_name,
|
||||||
|
resnet50_unzip_folder_name, resnet50_fp32_model_url,
|
||||||
|
resnet50_zip_name, resnet50_unzip_folder_name)
|
||||||
|
os.system(cmd)
|
||||||
|
|
||||||
|
self.iterations = 100
|
||||||
|
self.skip_batch_num = 5
|
||||||
|
|
||||||
|
def run_program(self, model_path, generate_int8=False, algo='direct'):
|
||||||
|
image_shape = [3, 224, 224]
|
||||||
|
os.environ['FLAGS_use_mkldnn'] = 'True'
|
||||||
|
|
||||||
|
fluid.memory_optimize(fluid.default_main_program())
|
||||||
|
|
||||||
|
exe = fluid.Executor(fluid.CPUPlace())
|
||||||
|
|
||||||
|
[infer_program, feed_dict,
|
||||||
|
fetch_targets] = fluid.io.load_inference_model(model_path, exe)
|
||||||
|
|
||||||
|
t = fluid.transpiler.InferenceTranspiler()
|
||||||
|
t.transpile(infer_program, fluid.CPUPlace())
|
||||||
|
|
||||||
|
val_reader = paddle.batch(val(), batch_size=1)
|
||||||
|
|
||||||
|
if generate_int8:
|
||||||
|
int8_model = os.path.join(os.getcwd(), "calibration_out")
|
||||||
|
|
||||||
|
if os.path.exists(int8_model):
|
||||||
|
os.system("rm -rf " + int8_model)
|
||||||
|
os.system("mkdir " + int8_model)
|
||||||
|
|
||||||
|
print("Start calibration ...")
|
||||||
|
|
||||||
|
calibrator = ut.Calibrator(
|
||||||
|
program=infer_program,
|
||||||
|
pretrained_model=model_path,
|
||||||
|
iterations=100,
|
||||||
|
debug=False,
|
||||||
|
algo=algo)
|
||||||
|
|
||||||
|
sampling_data = {}
|
||||||
|
|
||||||
|
calibrator.generate_sampling_program()
|
||||||
|
test_info = []
|
||||||
|
cnt = 0
|
||||||
|
for batch_id, data in enumerate(val_reader()):
|
||||||
|
image = np.array(
|
||||||
|
[x[0].reshape(image_shape) for x in data]).astype("float32")
|
||||||
|
label = np.array([x[1] for x in data]).astype("int64")
|
||||||
|
label = label.reshape([-1, 1])
|
||||||
|
running_program = calibrator.sampling_program.clone(
|
||||||
|
) if generate_int8 else infer_program.clone()
|
||||||
|
for op in running_program.current_block().ops:
|
||||||
|
if op.has_attr("use_mkldnn"):
|
||||||
|
op._set_attr("use_mkldnn", True)
|
||||||
|
|
||||||
|
_, acc1, _ = exe.run(
|
||||||
|
running_program,
|
||||||
|
feed={feed_dict[0]: image,
|
||||||
|
feed_dict[1]: label},
|
||||||
|
fetch_list=fetch_targets)
|
||||||
|
if generate_int8:
|
||||||
|
for i in calibrator.sampling_program.list_vars():
|
||||||
|
if i.name in calibrator.sampling_vars:
|
||||||
|
np_data = np.array(fluid.global_scope().find_var(i.name)
|
||||||
|
.get_tensor())
|
||||||
|
if i.name not in sampling_data:
|
||||||
|
sampling_data[i.name] = []
|
||||||
|
sampling_data[i.name].append(np_data)
|
||||||
|
|
||||||
|
test_info.append(np.mean(acc1) * len(data))
|
||||||
|
cnt += len(data)
|
||||||
|
|
||||||
|
if batch_id != self.iterations - 1:
|
||||||
|
continue
|
||||||
|
|
||||||
|
break
|
||||||
|
|
||||||
|
if generate_int8:
|
||||||
|
calibrator.generate_quantized_data(sampling_data)
|
||||||
|
fluid.io.save_inference_model(int8_model, feed_dict, fetch_targets,
|
||||||
|
exe, calibrator.sampling_program)
|
||||||
|
print(
|
||||||
|
"Calibration is done and the corresponding files were generated at {}".
|
||||||
|
format(os.path.abspath("calibration_out")))
|
||||||
|
else:
|
||||||
|
return np.sum(test_info) / cnt
|
||||||
|
|
||||||
|
def test_calibration_for_resnet50(self):
|
||||||
|
fp32_acc1 = self.run_program("resnet50_fp32/model")
|
||||||
|
self.run_program("resnet50_fp32/model", True)
|
||||||
|
int8_acc1 = self.run_program("calibration_out")
|
||||||
|
delta_value = np.abs(fp32_acc1 - int8_acc1)
|
||||||
|
self.assertLess(delta_value, 0.01)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue