Extract apply_backward_pass to backward.py (#5026)
* Extract apply_backward_pass to backward.py Rename apply_backward_pass to append_backward_ops * Fix CI * Update design docrevert-4814-Add_sequence_project_op
parent
fd2eb55071
commit
dd0008d57f
@ -0,0 +1,45 @@
|
|||||||
|
from paddle.v2.framework import framework as framework
|
||||||
|
|
||||||
|
__all__ = ['append_backward_ops']
|
||||||
|
|
||||||
|
|
||||||
|
def append_backward_ops(loss, parameter_list=None, no_grad_set=None):
|
||||||
|
"""
|
||||||
|
Create and add gradient Operators in BlockDesc to compute
|
||||||
|
gradients of `loss` for parameters in parameter_list
|
||||||
|
|
||||||
|
:param loss: an variable generated by cost function.
|
||||||
|
:type loss: Variable
|
||||||
|
:param no_grad_set: variable that should not create gradient
|
||||||
|
:type no_grad_set: set
|
||||||
|
:param parameter_list: parameters that need to compute gradient and
|
||||||
|
update to optimize the lost.
|
||||||
|
:type: list
|
||||||
|
:return: list of (parameters, gradients) pair.
|
||||||
|
:rtype: list[Variable]
|
||||||
|
"""
|
||||||
|
assert isinstance(loss, framework.Variable)
|
||||||
|
param_grad_map = loss.block.program.append_backward(loss, no_grad_set or
|
||||||
|
set())
|
||||||
|
if parameter_list is not None:
|
||||||
|
parameters = parameter_list
|
||||||
|
else:
|
||||||
|
params = loss.block.program.global_block().all_parameters()
|
||||||
|
parameters = [param.name for param in params]
|
||||||
|
params_and_grads = []
|
||||||
|
for param in parameters:
|
||||||
|
if param not in param_grad_map:
|
||||||
|
raise ValueError("param %s is not in map" % param)
|
||||||
|
grad_info = param_grad_map[param]
|
||||||
|
grad_block = loss.block.program.block(grad_info[1])
|
||||||
|
if not grad_block.has_var(grad_info[0]):
|
||||||
|
raise ValueError("grad block[{0}] did not have grad var {1}".format(
|
||||||
|
grad_info[1], grad_info[0]))
|
||||||
|
# Get the param var from the global block
|
||||||
|
param_var = loss.block.program.global_block().var(param)
|
||||||
|
grad_var = grad_block.var(grad_info[0])
|
||||||
|
if loss.block.has_var(grad_info[0]):
|
||||||
|
params_and_grads.append((param_var, grad_var))
|
||||||
|
else:
|
||||||
|
params_and_grads.append((param_var, None))
|
||||||
|
return params_and_grads
|
Loading…
Reference in new issue