|
|
|
@ -25,6 +25,9 @@ from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
|
|
|
|
|
from paddle.fluid.dygraph.base import to_variable
|
|
|
|
|
from test_imperative_base import new_program_scope
|
|
|
|
|
|
|
|
|
|
if fluid.is_compiled_with_cuda():
|
|
|
|
|
fluid.set_flags({'FLAGS_cudnn_deterministic': True})
|
|
|
|
|
|
|
|
|
|
batch_size = 8
|
|
|
|
|
train_parameters = {
|
|
|
|
|
"input_size": [3, 224, 224],
|
|
|
|
@ -340,7 +343,9 @@ class TestImperativeResneXt(unittest.TestCase):
|
|
|
|
|
label.stop_gradient = True
|
|
|
|
|
|
|
|
|
|
out = se_resnext(img)
|
|
|
|
|
loss = fluid.layers.cross_entropy(input=out, label=label)
|
|
|
|
|
softmax_out = fluid.layers.softmax(out, use_cudnn=False)
|
|
|
|
|
loss = fluid.layers.cross_entropy(
|
|
|
|
|
input=softmax_out, label=label)
|
|
|
|
|
avg_loss = fluid.layers.mean(x=loss)
|
|
|
|
|
|
|
|
|
|
dy_out = avg_loss.numpy()
|
|
|
|
@ -386,7 +391,8 @@ class TestImperativeResneXt(unittest.TestCase):
|
|
|
|
|
name='pixel', shape=[3, 224, 224], dtype='float32')
|
|
|
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
|
|
|
out = se_resnext(img)
|
|
|
|
|
loss = fluid.layers.cross_entropy(input=out, label=label)
|
|
|
|
|
softmax_out = fluid.layers.softmax(out, use_cudnn=False)
|
|
|
|
|
loss = fluid.layers.cross_entropy(input=softmax_out, label=label)
|
|
|
|
|
avg_loss = fluid.layers.mean(x=loss)
|
|
|
|
|
optimizer.minimize(avg_loss)
|
|
|
|
|
|
|
|
|
@ -443,7 +449,9 @@ class TestImperativeResneXt(unittest.TestCase):
|
|
|
|
|
static_grad_value[static_grad_name_list[
|
|
|
|
|
i - grad_start_pos]] = out[i]
|
|
|
|
|
|
|
|
|
|
self.assertTrue(np.allclose(static_out, dy_out))
|
|
|
|
|
self.assertTrue(
|
|
|
|
|
np.allclose(static_out, dy_out),
|
|
|
|
|
"\nstatic_out: {}\ndy_out: {}".format(static_out, dy_out))
|
|
|
|
|
|
|
|
|
|
self.assertEqual(len(dy_param_init_value), len(static_param_init_value))
|
|
|
|
|
|
|
|
|
@ -455,16 +463,23 @@ class TestImperativeResneXt(unittest.TestCase):
|
|
|
|
|
self.assertEqual(len(dy_grad_value), len(static_grad_value))
|
|
|
|
|
|
|
|
|
|
for key, value in six.iteritems(static_grad_value):
|
|
|
|
|
self.assertTrue(np.allclose(value, dy_grad_value[key]))
|
|
|
|
|
self.assertTrue(
|
|
|
|
|
np.allclose(value, dy_grad_value[key]),
|
|
|
|
|
"\nstatic_grad_value: {}\ndy_grad_value: {}".format(
|
|
|
|
|
value, dy_grad_value[key]))
|
|
|
|
|
self.assertTrue(np.isfinite(value.all()))
|
|
|
|
|
self.assertFalse(np.isnan(value.any()))
|
|
|
|
|
|
|
|
|
|
self.assertEqual(len(dy_param_value), len(static_param_value))
|
|
|
|
|
for key, value in six.iteritems(static_param_value):
|
|
|
|
|
self.assertTrue(np.allclose(value, dy_param_value[key]))
|
|
|
|
|
self.assertTrue(
|
|
|
|
|
np.allclose(value, dy_param_value[key]),
|
|
|
|
|
"\nstatic_param_value: {}\ndy_param_value: {}".format(
|
|
|
|
|
value, dy_param_value[key]))
|
|
|
|
|
self.assertTrue(np.isfinite(value.all()))
|
|
|
|
|
self.assertFalse(np.isnan(value.any()))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
paddle.enable_static()
|
|
|
|
|
unittest.main()
|
|
|
|
|