commit
dd343a4971
@ -0,0 +1,59 @@
|
|||||||
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "paddle/fluid/framework/details/modify_op_lock_and_record_event_pass.h"
|
||||||
|
#include "paddle/fluid/framework/details/computation_op_handle.h"
|
||||||
|
#include "paddle/fluid/framework/details/multi_devices_helper.h"
|
||||||
|
#include "paddle/fluid/framework/details/op_graph_view.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace framework {
|
||||||
|
namespace details {
|
||||||
|
|
||||||
|
static bool IsLockAndRecordEventFreeComputationOpHandle(
|
||||||
|
ComputationOpHandle *op, const OpGraphView &graph_view) {
|
||||||
|
if (!platform::is_gpu_place(op->GetPlace())) return false;
|
||||||
|
for (auto &pending_op : graph_view.PendingOps(op)) {
|
||||||
|
auto *tmp = dynamic_cast<ComputationOpHandle *>(pending_op);
|
||||||
|
if (tmp == nullptr || !(tmp->GetPlace() == op->GetPlace())) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::unique_ptr<ir::Graph> ModifyOpLockAndRecordEventPass::ApplyImpl(
|
||||||
|
std::unique_ptr<ir::Graph> ir_graph) const {
|
||||||
|
auto &all_ops = ir_graph->Get<GraphOps>(kGraphOps);
|
||||||
|
OpGraphView graph_view(all_ops);
|
||||||
|
for (auto &op : all_ops) {
|
||||||
|
auto *compute_op = dynamic_cast<ComputationOpHandle *>(op.get());
|
||||||
|
if (compute_op == nullptr) continue;
|
||||||
|
bool is_lock_and_record_event_free =
|
||||||
|
IsLockAndRecordEventFreeComputationOpHandle(compute_op, graph_view);
|
||||||
|
compute_op->SetLockAndRecordEventFree(is_lock_and_record_event_free);
|
||||||
|
if (is_lock_and_record_event_free) {
|
||||||
|
VLOG(10) << "Set is_lock_and_record_event_free be true in op "
|
||||||
|
<< compute_op->DebugString();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return ir_graph;
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace details
|
||||||
|
} // namespace framework
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
REGISTER_PASS(modify_op_lock_and_record_event_pass,
|
||||||
|
paddle::framework::details::ModifyOpLockAndRecordEventPass);
|
@ -0,0 +1,32 @@
|
|||||||
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "paddle/fluid/framework/ir/graph.h"
|
||||||
|
#include "paddle/fluid/framework/ir/pass.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace framework {
|
||||||
|
namespace details {
|
||||||
|
|
||||||
|
class ModifyOpLockAndRecordEventPass : public ir::Pass {
|
||||||
|
protected:
|
||||||
|
std::unique_ptr<ir::Graph> ApplyImpl(
|
||||||
|
std::unique_ptr<ir::Graph> graph) const override;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace details
|
||||||
|
} // namespace framework
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,77 @@
|
|||||||
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "paddle/fluid/framework/details/op_graph_view.h"
|
||||||
|
#include <queue>
|
||||||
|
#include <utility>
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace framework {
|
||||||
|
namespace details {
|
||||||
|
|
||||||
|
OpGraphView::OpGraphView(
|
||||||
|
const std::vector<std::unique_ptr<OpHandleBase>> &ops) {
|
||||||
|
Build(ops);
|
||||||
|
}
|
||||||
|
|
||||||
|
void OpGraphView::Build(const std::vector<std::unique_ptr<OpHandleBase>> &ops) {
|
||||||
|
for (auto &op : ops) {
|
||||||
|
preceding_ops_[op.get()];
|
||||||
|
pending_ops_[op.get()];
|
||||||
|
for (auto &var : op->Outputs()) {
|
||||||
|
for (auto &pending_op : var->PendingOps()) {
|
||||||
|
preceding_ops_[pending_op].insert(op.get());
|
||||||
|
pending_ops_[op.get()].insert(pending_op);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
PADDLE_ENFORCE(
|
||||||
|
preceding_ops_.size() == ops.size() && pending_ops_.size() == ops.size(),
|
||||||
|
"There are duplicate ops in graph.");
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t OpGraphView::OpNumber() const { return preceding_ops_.size(); }
|
||||||
|
|
||||||
|
std::unordered_set<OpHandleBase *> OpGraphView::AllOps() const {
|
||||||
|
std::unordered_set<OpHandleBase *> ret;
|
||||||
|
for (auto &pair : preceding_ops_) {
|
||||||
|
ret.insert(pair.first);
|
||||||
|
}
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool OpGraphView::HasOp(OpHandleBase *op) const {
|
||||||
|
return preceding_ops_.count(op) != 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void OpGraphView::EnforceHasOp(OpHandleBase *op) const {
|
||||||
|
PADDLE_ENFORCE(HasOp(op), "Cannot find op %s in OpGraphView",
|
||||||
|
op == nullptr ? "nullptr" : op->DebugString());
|
||||||
|
}
|
||||||
|
|
||||||
|
const std::unordered_set<OpHandleBase *> &OpGraphView::PrecedingOps(
|
||||||
|
OpHandleBase *op) const {
|
||||||
|
EnforceHasOp(op);
|
||||||
|
return preceding_ops_.at(op);
|
||||||
|
}
|
||||||
|
|
||||||
|
const std::unordered_set<OpHandleBase *> &OpGraphView::PendingOps(
|
||||||
|
OpHandleBase *op) const {
|
||||||
|
EnforceHasOp(op);
|
||||||
|
return pending_ops_.at(op);
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace details
|
||||||
|
} // namespace framework
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,54 @@
|
|||||||
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <memory>
|
||||||
|
#include <unordered_map>
|
||||||
|
#include <unordered_set>
|
||||||
|
#include <vector>
|
||||||
|
#include "paddle/fluid/framework/details/op_handle_base.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace framework {
|
||||||
|
namespace details {
|
||||||
|
|
||||||
|
class OpGraphView {
|
||||||
|
public:
|
||||||
|
explicit OpGraphView(const std::vector<std::unique_ptr<OpHandleBase>> &ops);
|
||||||
|
|
||||||
|
size_t OpNumber() const;
|
||||||
|
|
||||||
|
std::unordered_set<OpHandleBase *> AllOps() const;
|
||||||
|
|
||||||
|
const std::unordered_set<OpHandleBase *> &PrecedingOps(
|
||||||
|
OpHandleBase *op) const;
|
||||||
|
|
||||||
|
const std::unordered_set<OpHandleBase *> &PendingOps(OpHandleBase *op) const;
|
||||||
|
|
||||||
|
bool HasOp(OpHandleBase *op) const;
|
||||||
|
|
||||||
|
private:
|
||||||
|
void Build(const std::vector<std::unique_ptr<OpHandleBase>> &ops);
|
||||||
|
void EnforceHasOp(OpHandleBase *op) const;
|
||||||
|
|
||||||
|
std::unordered_map<OpHandleBase *, std::unordered_set<OpHandleBase *>>
|
||||||
|
preceding_ops_;
|
||||||
|
std::unordered_map<OpHandleBase *, std::unordered_set<OpHandleBase *>>
|
||||||
|
pending_ops_;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace details
|
||||||
|
} // namespace framework
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,224 @@
|
|||||||
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
#include "paddle/fluid/inference/tests/api/tester_helper.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace inference {
|
||||||
|
using contrib::AnalysisConfig;
|
||||||
|
#define MAX_TURN_NUM 9
|
||||||
|
#define MAX_TURN_LEN 50
|
||||||
|
static std::vector<float> result_data;
|
||||||
|
|
||||||
|
struct DataRecord {
|
||||||
|
std::vector<std::vector<int64_t>>
|
||||||
|
turns[MAX_TURN_NUM]; // turns data : MAX_TURN_NUM
|
||||||
|
std::vector<std::vector<float>>
|
||||||
|
turns_mask[MAX_TURN_NUM]; // turns mask data : MAX_TURN_NUM
|
||||||
|
std::vector<std::vector<int64_t>> response; // response data : 1
|
||||||
|
std::vector<std::vector<float>> response_mask; // response mask data : 1
|
||||||
|
size_t batch_iter{0};
|
||||||
|
size_t batch_size{1};
|
||||||
|
size_t num_samples; // total number of samples
|
||||||
|
DataRecord() = default;
|
||||||
|
explicit DataRecord(const std::string &path, int batch_size = 1)
|
||||||
|
: batch_size(batch_size) {
|
||||||
|
Load(path);
|
||||||
|
}
|
||||||
|
DataRecord NextBatch() {
|
||||||
|
DataRecord data;
|
||||||
|
size_t batch_end = batch_iter + batch_size;
|
||||||
|
// NOTE skip the final batch, if no enough data is provided.
|
||||||
|
if (batch_end <= response.size()) {
|
||||||
|
for (int i = 0; i < MAX_TURN_NUM; ++i) {
|
||||||
|
data.turns[i].assign(turns[i].begin() + batch_iter,
|
||||||
|
turns[i].begin() + batch_end);
|
||||||
|
}
|
||||||
|
for (int i = 0; i < MAX_TURN_NUM; ++i) {
|
||||||
|
data.turns_mask[i].assign(turns_mask[i].begin() + batch_iter,
|
||||||
|
turns_mask[i].begin() + batch_end);
|
||||||
|
}
|
||||||
|
data.response.assign(response.begin() + batch_iter,
|
||||||
|
response.begin() + batch_end);
|
||||||
|
data.response_mask.assign(response_mask.begin() + batch_iter,
|
||||||
|
response_mask.begin() + batch_end);
|
||||||
|
CHECK(!data.response.empty());
|
||||||
|
CHECK(!data.response_mask.empty());
|
||||||
|
CHECK_EQ(data.response.size(), data.response_mask.size());
|
||||||
|
}
|
||||||
|
batch_iter += batch_size;
|
||||||
|
return data;
|
||||||
|
}
|
||||||
|
void Load(const std::string &path) {
|
||||||
|
std::ifstream file(path);
|
||||||
|
std::string line;
|
||||||
|
size_t num_lines = 0;
|
||||||
|
result_data.clear();
|
||||||
|
while (std::getline(file, line)) {
|
||||||
|
num_lines++;
|
||||||
|
std::vector<std::string> data;
|
||||||
|
split(line, ',', &data);
|
||||||
|
CHECK_EQ(data.size(), 2 * MAX_TURN_NUM + 3);
|
||||||
|
// load turn data
|
||||||
|
std::vector<int64_t> turns_tmp[MAX_TURN_NUM];
|
||||||
|
for (int i = 0; i < MAX_TURN_NUM; ++i) {
|
||||||
|
split_to_int64(data[i], ' ', &turns_tmp[i]);
|
||||||
|
turns[i].push_back(std::move(turns_tmp[i]));
|
||||||
|
}
|
||||||
|
// load turn_mask data
|
||||||
|
std::vector<float> turns_mask_tmp[MAX_TURN_NUM];
|
||||||
|
for (int i = 0; i < MAX_TURN_NUM; ++i) {
|
||||||
|
split_to_float(data[MAX_TURN_NUM + i], ' ', &turns_mask_tmp[i]);
|
||||||
|
turns_mask[i].push_back(std::move(turns_mask_tmp[i]));
|
||||||
|
}
|
||||||
|
// load response data
|
||||||
|
std::vector<int64_t> response_tmp;
|
||||||
|
split_to_int64(data[2 * MAX_TURN_NUM], ' ', &response_tmp);
|
||||||
|
response.push_back(std::move(response_tmp));
|
||||||
|
// load response_mask data
|
||||||
|
std::vector<float> response_mask_tmp;
|
||||||
|
split_to_float(data[2 * MAX_TURN_NUM + 1], ' ', &response_mask_tmp);
|
||||||
|
response_mask.push_back(std::move(response_mask_tmp));
|
||||||
|
// load result data
|
||||||
|
float result_tmp;
|
||||||
|
result_tmp = std::stof(data[2 * MAX_TURN_NUM + 2]);
|
||||||
|
result_data.push_back(result_tmp);
|
||||||
|
}
|
||||||
|
num_samples = num_lines;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
|
||||||
|
int batch_size) {
|
||||||
|
PaddleTensor turns_tensor[MAX_TURN_NUM];
|
||||||
|
PaddleTensor turns_mask_tensor[MAX_TURN_NUM];
|
||||||
|
PaddleTensor response_tensor;
|
||||||
|
PaddleTensor response_mask_tensor;
|
||||||
|
std::string turn_pre = "turn_";
|
||||||
|
std::string turn_mask_pre = "turn_mask_";
|
||||||
|
|
||||||
|
auto one_batch = data->NextBatch();
|
||||||
|
int size = one_batch.response[0].size();
|
||||||
|
CHECK_EQ(size, MAX_TURN_LEN);
|
||||||
|
// turn tensor assignment
|
||||||
|
for (int i = 0; i < MAX_TURN_NUM; ++i) {
|
||||||
|
turns_tensor[i].name = turn_pre + std::to_string(i);
|
||||||
|
turns_tensor[i].shape.assign({batch_size, size, 1});
|
||||||
|
turns_tensor[i].dtype = PaddleDType::INT64;
|
||||||
|
TensorAssignData<int64_t>(&turns_tensor[i], one_batch.turns[i]);
|
||||||
|
}
|
||||||
|
// turn mask tensor assignment
|
||||||
|
for (int i = 0; i < MAX_TURN_NUM; ++i) {
|
||||||
|
turns_mask_tensor[i].name = turn_mask_pre + std::to_string(i);
|
||||||
|
turns_mask_tensor[i].shape.assign({batch_size, size, 1});
|
||||||
|
turns_mask_tensor[i].dtype = PaddleDType::FLOAT32;
|
||||||
|
TensorAssignData<float>(&turns_mask_tensor[i], one_batch.turns_mask[i]);
|
||||||
|
}
|
||||||
|
// response tensor assignment
|
||||||
|
response_tensor.name = "response";
|
||||||
|
response_tensor.shape.assign({batch_size, size, 1});
|
||||||
|
response_tensor.dtype = PaddleDType::INT64;
|
||||||
|
TensorAssignData<int64_t>(&response_tensor, one_batch.response);
|
||||||
|
// response mask tensor assignment
|
||||||
|
response_mask_tensor.name = "response_mask";
|
||||||
|
response_mask_tensor.shape.assign({batch_size, size, 1});
|
||||||
|
response_mask_tensor.dtype = PaddleDType::FLOAT32;
|
||||||
|
TensorAssignData<float>(&response_mask_tensor, one_batch.response_mask);
|
||||||
|
|
||||||
|
// Set inputs.
|
||||||
|
for (int i = 0; i < MAX_TURN_NUM; ++i) {
|
||||||
|
input_slots->push_back(std::move(turns_tensor[i]));
|
||||||
|
}
|
||||||
|
for (int i = 0; i < MAX_TURN_NUM; ++i) {
|
||||||
|
input_slots->push_back(std::move(turns_mask_tensor[i]));
|
||||||
|
}
|
||||||
|
input_slots->push_back(std::move(response_tensor));
|
||||||
|
input_slots->push_back(std::move(response_mask_tensor));
|
||||||
|
}
|
||||||
|
|
||||||
|
void SetConfig(contrib::AnalysisConfig *cfg) {
|
||||||
|
cfg->prog_file = FLAGS_infer_model + "/__model__";
|
||||||
|
cfg->param_file = FLAGS_infer_model + "/param";
|
||||||
|
cfg->use_gpu = false;
|
||||||
|
cfg->device = 0;
|
||||||
|
cfg->specify_input_name = true;
|
||||||
|
cfg->enable_ir_optim = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
|
||||||
|
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
|
||||||
|
std::vector<PaddleTensor> input_slots;
|
||||||
|
int test_batch_num =
|
||||||
|
FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
|
||||||
|
LOG(INFO) << "The number of samples to be test: "
|
||||||
|
<< test_batch_num * FLAGS_batch_size;
|
||||||
|
for (int bid = 0; bid < test_batch_num; ++bid) {
|
||||||
|
input_slots.clear();
|
||||||
|
PrepareInputs(&input_slots, &data, FLAGS_batch_size);
|
||||||
|
(*inputs).emplace_back(input_slots);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Easy for profiling independently.
|
||||||
|
TEST(Analyzer_dam, profile) {
|
||||||
|
contrib::AnalysisConfig cfg;
|
||||||
|
SetConfig(&cfg);
|
||||||
|
|
||||||
|
std::vector<PaddleTensor> outputs;
|
||||||
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
||||||
|
SetInput(&input_slots_all);
|
||||||
|
TestPrediction(cfg, input_slots_all, &outputs, FLAGS_num_threads);
|
||||||
|
|
||||||
|
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
|
||||||
|
PADDLE_ENFORCE_GT(outputs.size(), 0);
|
||||||
|
size_t size = GetSize(outputs[0]);
|
||||||
|
PADDLE_ENFORCE_GT(size, 0);
|
||||||
|
float *result = static_cast<float *>(outputs[0].data.data());
|
||||||
|
for (size_t i = 0; i < size; i++) {
|
||||||
|
EXPECT_NEAR(result[i], result_data[i], 1e-3);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Check the fuse status
|
||||||
|
TEST(Analyzer_dam, fuse_statis) {
|
||||||
|
contrib::AnalysisConfig cfg;
|
||||||
|
SetConfig(&cfg);
|
||||||
|
|
||||||
|
if (FLAGS_use_analysis) {
|
||||||
|
int num_ops;
|
||||||
|
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
|
||||||
|
auto fuse_statis = GetFuseStatis(
|
||||||
|
static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
|
||||||
|
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
|
||||||
|
EXPECT_EQ(fuse_statis.at("fc_fuse"), 317);
|
||||||
|
EXPECT_EQ(num_ops, 2020);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compare result of NativeConfig and AnalysisConfig
|
||||||
|
TEST(Analyzer_dam, compare) {
|
||||||
|
contrib::AnalysisConfig cfg;
|
||||||
|
SetConfig(&cfg);
|
||||||
|
|
||||||
|
std::vector<std::vector<PaddleTensor>> input_slots_all;
|
||||||
|
SetInput(&input_slots_all);
|
||||||
|
|
||||||
|
if (FLAGS_use_analysis) {
|
||||||
|
CompareNativeAndAnalysis(cfg, input_slots_all);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace inference
|
||||||
|
} // namespace paddle
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue