parent
f4dec5cdee
commit
dde19a0ff8
@ -0,0 +1,6 @@
|
||||
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
|
||||
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
|
||||
|
||||
foreach(src ${TEST_OPS})
|
||||
py_test(${src} SRCS ${src}.py)
|
||||
endforeach()
|
@ -1,5 +1,5 @@
|
||||
version: 1.0
|
||||
include: ["./unitest/configs/pruners.yaml", "./unitest/configs/pruners_0.yaml"]
|
||||
include: ["./configs/pruners.yaml", "./configs/pruners_0.yaml"]
|
||||
pruners:
|
||||
pruner_1:
|
||||
class: 'RatioPruner'
|
@ -0,0 +1,80 @@
|
||||
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
|
||||
#
|
||||
# licensed under the apache license, version 2.0 (the "license");
|
||||
# you may not use this file except in compliance with the license.
|
||||
# you may obtain a copy of the license at
|
||||
#
|
||||
# http://www.apache.org/licenses/license-2.0
|
||||
#
|
||||
# unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the license is distributed on an "as is" basis,
|
||||
# without warranties or conditions of any kind, either express or implied.
|
||||
# see the license for the specific language governing permissions and
|
||||
# limitations under the license.
|
||||
|
||||
from __future__ import print_function
|
||||
import unittest
|
||||
import paddle.fluid as fluid
|
||||
import six
|
||||
from paddle.fluid.framework import IrGraph
|
||||
from paddle.fluid import core
|
||||
|
||||
|
||||
def residual_block(num):
|
||||
def conv_bn_layer(input,
|
||||
ch_out,
|
||||
filter_size,
|
||||
stride,
|
||||
padding,
|
||||
act='relu',
|
||||
bias_attr=False):
|
||||
tmp = fluid.layers.conv2d(
|
||||
input=input,
|
||||
filter_size=filter_size,
|
||||
num_filters=ch_out,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
act=None,
|
||||
bias_attr=bias_attr)
|
||||
return fluid.layers.batch_norm(input=tmp, act=act)
|
||||
|
||||
data = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32')
|
||||
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
||||
hidden = data
|
||||
for _ in six.moves.xrange(num):
|
||||
conv = conv_bn_layer(hidden, 16, 3, 1, 1, act=None, bias_attr=True)
|
||||
short = conv_bn_layer(hidden, 16, 1, 1, 0, act=None)
|
||||
hidden = fluid.layers.elementwise_add(x=conv, y=short, act='relu')
|
||||
fc = fluid.layers.fc(input=hidden, size=10)
|
||||
loss = fluid.layers.cross_entropy(input=fc, label=label)
|
||||
loss = fluid.layers.mean(loss)
|
||||
return loss
|
||||
|
||||
|
||||
class TestGraph(unittest.TestCase):
|
||||
def test_graph_functions(self):
|
||||
main = fluid.Program()
|
||||
startup = fluid.Program()
|
||||
with fluid.program_guard(main, startup):
|
||||
loss = residual_block(2)
|
||||
opt = fluid.optimizer.Adam(learning_rate=0.001)
|
||||
opt.minimize(loss)
|
||||
graph = IrGraph(core.Graph(main.desc), for_test=False)
|
||||
marked_nodes = set()
|
||||
for op in graph.all_ops():
|
||||
if op.name().find('conv2d') > -1:
|
||||
marked_nodes.add(op)
|
||||
graph.draw('.', 'residual', marked_nodes)
|
||||
self.assertFalse(graph.has_circle())
|
||||
self.assertEqual(graph.graph_num(), 1)
|
||||
nodes = graph.topology_sort()
|
||||
self.assertEqual(len(nodes), len(graph.all_ops()))
|
||||
nodes_map = graph.build_adjacency_list()
|
||||
self.assertEqual(len(nodes_map), len(graph.all_ops()))
|
||||
nodes_num = len(graph.all_nodes())
|
||||
graph.safe_remove_nodes(marked_nodes)
|
||||
self.assertEqual(len(graph.all_nodes()), nodes_num - len(marked_nodes))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue