|
|
|
@ -20,45 +20,45 @@ namespace paddle {
|
|
|
|
|
namespace operators {
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
struct CosSimDyFunctor<platform::CUDADeviceContext, T> {
|
|
|
|
|
CosSimDyFunctor(const T* x_norm, const T* y_norm, const T* x, const T* y,
|
|
|
|
|
const T* z, const T* dz, T* dy, int cols)
|
|
|
|
|
: x_norm_(x_norm),
|
|
|
|
|
y_norm_(y_norm),
|
|
|
|
|
x_(x),
|
|
|
|
|
y_(y),
|
|
|
|
|
z_(z),
|
|
|
|
|
dz_(dz),
|
|
|
|
|
dy_(dy),
|
|
|
|
|
cols_(static_cast<size_t>(cols)) {}
|
|
|
|
|
|
|
|
|
|
inline HOSTDEVICE void operator()(size_t offset) const {
|
|
|
|
|
auto xy_norm_prod = x_norm_[offset] * y_norm_[0];
|
|
|
|
|
auto dz = dz_[offset];
|
|
|
|
|
auto z = z_[offset];
|
|
|
|
|
auto* x = x_ + cols_ * offset;
|
|
|
|
|
auto reciprocal_xy_norm_prod = 1 / xy_norm_prod;
|
|
|
|
|
__global__ void CosSimDyKernel(const T* x_norm, const T* y_norm, const T* x,
|
|
|
|
|
const T* y, const T* z, const T* dz,
|
|
|
|
|
const size_t rows, const size_t cols, T* dy) {
|
|
|
|
|
int grid_size = blockDim.x * gridDim.x;
|
|
|
|
|
T y_norm_data = y_norm[0];
|
|
|
|
|
for (int offset = blockIdx.x * blockDim.x + threadIdx.x; offset < rows;
|
|
|
|
|
offset += grid_size) {
|
|
|
|
|
T xy_norm_prod = x_norm[offset] * y_norm_data;
|
|
|
|
|
T dz_data = dz[offset];
|
|
|
|
|
T z_data = z[offset];
|
|
|
|
|
const T* x_data = x + cols * offset;
|
|
|
|
|
T reciprocal_xy_norm_prod = 1 / xy_norm_prod;
|
|
|
|
|
|
|
|
|
|
auto y_norm_square = y_norm_[0] * y_norm_[0];
|
|
|
|
|
auto reciprocal_y_norm_square = 1 / y_norm_square;
|
|
|
|
|
for (size_t i = 0; i < cols_; ++i) {
|
|
|
|
|
T dy = dz * (x[i] * reciprocal_xy_norm_prod -
|
|
|
|
|
z * y_[i] * reciprocal_y_norm_square);
|
|
|
|
|
// platform::CudaAtomicAdd(dy_ + i, dy);
|
|
|
|
|
dy_[i] += dy;
|
|
|
|
|
T y_norm_square = y_norm_data * y_norm_data;
|
|
|
|
|
T reciprocal_y_norm_square = 1 / y_norm_square;
|
|
|
|
|
for (size_t i = 0; i < cols; ++i) {
|
|
|
|
|
T dy_data = dz_data * (x_data[i] * reciprocal_xy_norm_prod -
|
|
|
|
|
z_data * y[i] * reciprocal_y_norm_square);
|
|
|
|
|
platform::CudaAtomicAdd(dy + i, dy_data);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const T* x_norm_;
|
|
|
|
|
const T* y_norm_;
|
|
|
|
|
const T* x_;
|
|
|
|
|
const T* y_;
|
|
|
|
|
const T* z_;
|
|
|
|
|
const T* dz_;
|
|
|
|
|
T* dy_;
|
|
|
|
|
const size_t cols_;
|
|
|
|
|
template <typename T>
|
|
|
|
|
struct CosSimDyFunctor<platform::CUDADeviceContext, T> {
|
|
|
|
|
inline void operator()(const platform::CUDADeviceContext& ctx,
|
|
|
|
|
const T* x_norm, const T* y_norm, const T* x,
|
|
|
|
|
const T* y, const T* z, const T* dz, const size_t rows,
|
|
|
|
|
const size_t cols, T* dy) const {
|
|
|
|
|
const int block_size = 512;
|
|
|
|
|
dim3 threads(block_size, 1);
|
|
|
|
|
dim3 grid(1, (rows + block_size - 1) / block_size);
|
|
|
|
|
CosSimDyKernel<T><<<grid, threads, 0, ctx.stream()>>>(
|
|
|
|
|
x_norm, y_norm, x, y, z, dz, rows, cols, dy);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template struct CosSimDyFunctor<platform::CUDADeviceContext, float>;
|
|
|
|
|
|
|
|
|
|
} // namespace operators
|
|
|
|
|
} // namespace paddle
|
|
|
|
|
|
|
|
|
|